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Neural networks (NNs) as universal approximators

Several success stories...
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But what if stakes are high?
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But what if stakes are high?

Uncertainty estimation becomes crucial!
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Sometimes we have a priori functional knowledge...

Some basic examples:

I Range of heart rate at rest between 60-100 bpm.

I Slow/fast variation of air pollutant

I Volatility of stock market

How can we incorporate such functional desiderata into the model?
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An easy way to specify functional desiderata:
Gaussian Processes (GPs)

Definition: a Gaussian process is a collection of random variables, any
finite number of which have (consistent) Gaussian distributions.

f ∼ N
(
µ(·), k (·, ·)

)
Example: RBF kernel as
covariance function:

k(x, x′) = σ2 exp

(
− (x− x′)2

2γ2

)
I Stationarity I Lengthscale

I Amplitude variance
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GPs are great, but what if I still want a NN?

Benefits of NN approaches:

I widely used (many tools available)

I parametric expression

I fast at evaluation time

Key Research Questions:

1. Can we design Bayesian NN priors that encode stationarity
properties like a GP while retaining the benefits of neural networks?

2. Can we easily specify lengthscale and amplitude variance in a
decoupled fashion?
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Background
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Bayesian Neural Networks

I Assume prior on network
parameters

I Most common, i.i.d Gaussians

y = fθ(x) + ε

ε ∼ N (0, σ2
yI)

θi ∼ N (0, σ2
θI) ∀i

I p(θ) =⇒ p(f)

(Yarin Gal blog)

I But what does a prior over
weights mean in function space?
Hard to know!
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Not only hard to encode functional properties with
BNNs; some properties are impossible to get

I For example, a BNN (with RBF activations) is nonstationary in
amplitude variance (Williams, 1997)

Question: can we design a Bayesian NN that exhibits stationarity? Yes!
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Related works

Expressive priors for Bayesian NNs

I Functional BNNs (Flam-Shepherd, et.al 2017; Sun et.al, 2019):
sample-based optimization w.r.t. reference functional distribution

I Neural processes (Garnelo et al., 2018): meta-learning to identify
functional properties based on many prior examples

I (Pearce et al., 2019) BNN architectures that recover equivalent GP
kernel combinations in the infinite width limit

user specs optim. free finite width deep

Sun et.al, 2019 yes no yes yes
Garnelo et.al, 2018 no no yes yes

Pearce et.al, 2019 yes yes no yes
PoRB-NET (this work) yes yes yes not yet
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Radial Basis Function Networks (RBFNs)

I Around since the 90s (Gyorfi et.al, 2002), recently renewed attention
(Taghi et.al, 2004; Zadeh et.al, 2018)

I NN based on radial basis φ(·), e.g., φ(x) = exp(−x2)

fθ(x) = b+
K∑
k=1

wkφ
(
sk(x− ck)

)
,

I s2k ∈ R: scale

I ck ∈ R: center

I wk ∈ R: output weight

I b ∈ R: output bias
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Comparison RBFN versus BNN formulation (D=1)

fθ(x) = b+

K∑
k=1

wkφ
(
sk(x− ck)

)

I s2k ∈ R: scale

I ck ∈ R: center

I wk ∈ R: output weight

I b ∈ R: output bias

fθ(x) = b+

K∑
k=1

wkφ
(
vkx+ dk

)

I vk ∈ R: input weight

I dk ∈ R: input bias

I wk ∈ R: output weight

I b ∈ R: output bias

Take-away: priors on different random quantities, RBFN more intuitive
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Bayesian RBFNs (Barber et.al, 1998)

ck ∼ N (0, σ2
c )

s2k ∼ Gamma(αs, βs)

wk ∼ N
(
0, σ2

wI
)

b ∼ N (0, σ2
b )

yn |xn,θ ∼ N (fθ(xn), σ2
y)

where

fθ(x) = b+

K∑
k=1

wk exp
(
− s2k(x− ck)2

)
I s2k ∈ R: scale

I ck ∈ R: center

I wk ∈ R: output weight

I b ∈ R: output bias

Functional properties still hard or impossible to encode!
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Functional properties still hard or impossible

Issues:

I non-stationary covariance function (Williams, 1997)

I lengthscale and variance are coupled

I As RBFs concentrate in
same region:

I summation =⇒ higher
variance

I increase in expressivity
=⇒ more upcrossings
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Model
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Poisson Process Radial Basis Function Networks
(PoRB-NET)

ck ∼ N (0, σ2
c )

s2k ∼ Gamma(αs, βs)

wk ∼ N
(
0, σ2

wI
)

b ∼ N (0, σ2
b )

yn |xn,θ ∼ N (fθ(xn), σ2
y)

where
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K∑
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Poisson Process Radial Basis Function Networks
(PoRB-NET)

c |λ ∼ Poisson Process (λ)

s2k ∼ Gamma(αs, βs)

wk ∼ N
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0, σ̃2

wI
)

b ∼ N (0, σ̃2
b )

yn |xn,θ ∼ N (fθ(xn), σ2
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where
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What if we don’t know the intensity function?

Prior on Intensity Function of Poisson Process

h ∼ GP(0, C(·, ·))
λ∗ ∼ Gamma(αλ, βλ)

λ(c) = λ∗sigmoid(h(c)),

4 2 0 2 4

2
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Posterior functions
train
test

4 2 0 2 4
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1.50
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2.00

2.25

2.50
Posterior intensity

posterior mean
truth
90% quantile
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Inference

1. Update network parameters θ given fixed nr. of hidden units K via
Hamiltonian Monte Carlo (HMC)

p(θ |y,x,K, λ) ∝

(
N∏
n=1

N (yn; f(xn;θ)

)
N (b; 0, σ2

b )

(
K∏
k=1

N (wk; 0, σ2
w) λ(ck)

)
.

2. Update network width K via birth/death moves

3. Update point-estimate for Poisson process intensity λ

λ̂(c) ≈ 1

S

∑
λ?φ(h(s)(c)),

where h(s) ∼ p(h|y,x,θ).
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Properties
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Stationarity

Cov(f(x), f(x+ h)) = σ2
b + σ2

wE [K]Eθ [ρ(x; θ)ρ(x+ h; θ)]︸ ︷︷ ︸
:=U(x,x+h)

5 0 5
1.0

1.5

2.0

2.5

3.0
Bayesian RBFN

5 0 5

PoRB-NET

h = 1
h = 2
h = 3

U(x1, x2) ∝ exp

(
− (x1 − x2)2

2(2σ2
s + σ4

s/σ
2
c )

)
︸ ︷︷ ︸

Stationary

exp

(
− x21 + x22

2(2σ2
c + σ2

s)

)
︸ ︷︷ ︸

Nonstationary

U(x1, x2) =
λ

Λ

√
π

s2
exp

{
−s2

(
x1 − x2

2

)2
}

[
Φ((C1 − xm)

√
2s2)− Φ((C0 − xm)

√
2s2λ)

]
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Decoupled lengthscale and amplitude variance

I Homogeneous Poisson Process

I We derive closed-form expression for covariance function
I Poisson process defined over finite region C
I As size of C tends to infinity,

Cov (f(x1), f(x2)) ≈ σ2
b + σ̃2

w exp

{
−λ2

(x1 − x2
2

)2
}

I Non-homogeneous Poisson Process

I Empirical stationarity
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Consistency

I Estimator ĝn(x) is said to be consistent with respect to the true
regression function g0(x) if, as n tends to infinity:∫

(ĝn(x)− g0(x))2 dx
p−→ 0.

I Posterior consistent over Hellinger neighborhoods if ∀ε > 0,

p({f : DH(f, f0) ≤ ε}) p−→ 1.

I (Lee,2000) shows that Hellinger consistency implies frequentist
consistency.

Theorem (Consistency of PoRB-NETs)
A PoRB-NET with uniform intensity function is Hellinger consistent as
the number of observations goes to infinity.
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Empirical Results
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PoRB-NET allows for easy specification of
lengthscale and signal variance like a GP

Prior of 
reference

Higher nr.
upcrossings

Higher
amplitude
variance
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PoRB-NET allows for easy specification of
lengthscale and signal variance like a GP

1. stationarity

2. easy specification in a
decoupled manner



27/31

Introduction Background Model Properties Empirical Results Conclusion

PoRB-NET is able to learn input-dependent
lengthscale information
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posterior mean
truth
90% quantile

PoRB-NET adds more hidden units wherever needed, and adapts
architecture width based on the data.



28/31

Introduction Background Model Properties Empirical Results Conclusion

PoRB-NET is able to capture non-stationary patterns
in real scenarios, adapting the lengthscale locally
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Conclusion
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Conclusion

In this talk, we have...

I highlighted incapacity of BNNs to express functional properties

I introduced PoRB-NET, a Bayesian NN prior to encode functional
desiderata like a GP

I proposed an inference scheme to learn input-dependent lengthscale

I showed theoretical properties: (i) consistency, (ii) decoupling of
amplitude and lengthscale

I validated empirically in synthetic and real datasets

All information online: https://arxiv.org/abs/1912.05779

As future work: deeper networks, higher dimensions.

Thank you for listening!

https://arxiv.org/abs/1912.05779
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Comparison RBFN versus BNN formulation (D=1)

fθ(x) = b+

K∑
k=1

wkφ
(
sk(x− ck)

)

s2k ∼ Gamma(αs, βs)

ck ∼ N (0, σ2
c )

wk ∼ N (0, σ2
w)

b ∼ N (0, σ2
0)

fθ(x) = b+

K∑
k=1

wkφ
(
vkx+ bk

)

v2k ∼ N (0, σ2
v)

bk ∼ N (0, σ2
b )

wk ∼ N (0, σ2
w)

b ∼ N (0, σ2
0)

Take-away: priors on different random quantities, RBFN more intuitive
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