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Example 1: Medical Diagnosis & Bayes Rule

Example 2: Coin Flipping & Parameter Estimation

Example 3: Temporal Regression & Model Selection

Some Random Thoughts

Example 1: Medical Diagnosis

Problem Formulation
1% of scanned women have breast cancer
80% of women with breast cancer get positive mammography
9.6% of women without breast cancer also get positive mammography

Question: A random women gets a positive scan, what is the
probability that she has breast cancer?

1 less than 1%
2 around 10%
3 around 90%
4 more than 99%
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Example 1: Medical Diagnosis

Problem Formulation
1% of scanned women have breast cancer
80% of women with breast cancer get positive mammography
9.6% of women without breast cancer also get positive mammography

C/C̄ = has cancer or not
M/M̄ = positive scan or not

p (C) = 0.01
p (M|C) = 0.8
p

�
M|C̄

�
= 0.096

p (C |M)?

Considering 10.000 subjects

M M̄

C 80 20
C̄ 950 8950

p (C |M) = p(C ,M)

p(C ,M)+p(C̄ ,M)
= p(C ,M)

p(M) ' 7.8%
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Problem Formulation
1% of scanned women have breast cancer
80% of women with breast cancer get positive mammography
9.6% of women without breast cancer also get positive mammography

C/C̄ = has cancer or not
M/M̄ = positive scan or not
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�
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Example 1: Medical Diagnosis

Problem Formulation
1% of scanned women have breast cancer
80% of women with breast cancer get positive mammography
9.6% of women without breast cancer also get positive mammography

C/C̄ = has cancer or not
M/M̄ = positive scan or not

p (C) = 0.05
p (M|C) = 0.8
p

�
M|C̄

�
= 0.096

p (C |M)?

Considering 10.000 subjects

M M̄

C 400 100
C̄ 912 8588

p (C |M) = p(C ,M)

p(C ,M)+p(C̄ ,M)
= p(C ,M)

p(M) ' 52.5%
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Example 1: Medical Diagnosis & Bayes Rule

Example 2: Coin Flipping & Parameter Estimation

Example 3: Temporal Regression & Model Selection

Some Random Thoughts

Bayesian Statistics

Probability = degree of belief (in contrast with frequentist definition)

Bayes Rule

p (✓|X ) =
p (X |✓) p (✓)

p (X )

posterior: p (✓|X )

likelihood: p (X |✓)
prior: p (✓)

evidence: p (X )
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Example 1: Medical Diagnosis & Bayes Rule

Example 2: Coin Flipping & Parameter Estimation

Example 3: Temporal Regression & Model Selection

Some Random Thoughts

Bayesian Statistics

1 Sum rule: p (A) =
P

B

p (A,B) or p (A) =
R
p (A,B) dB

2 Product rule: p (A,B) = p (A|B) p (B)

Evidence = marginal likelihood p (X ) =
R
p (X , ✓) d✓ =

R
p (X |✓) p (✓) d✓

Question: What is p (X |✓)?

Likelihood?
Conditional distribution?
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Example 1: Medical Diagnosis & Bayes Rule

Example 2: Coin Flipping & Parameter Estimation

Example 3: Temporal Regression & Model Selection

Some Random Thoughts

Example 2: Coin Flipping
The Frequentist Approach

Problem Formulation
Imagine you want to know if a coin is biased.
Imagine you see 140 times Head and 110 times Tail.
Is the coin well balanced or not?
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Some Random Thoughts

Example 2: Coin Flipping
The Bayesian Approach

Both data y and parameter ✓ as random
variables

y |✓ ⇠ Binomial (y |N, ✓)

✓ ⇠ Beta (✓|↵,�)
Joint distribution

p (y , ✓) = p (y |✓) p (✓)
Posterior distribution

p (✓|y) = p (y |✓) p (✓)
p (y)
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Some Random Thoughts

Parameter Estimation

Estimators
ML estimator

✓̂
ML

= argmax

✓
p (y |✓)

MAP estimator

✓̂
MAP

= argmax

✓
p (✓|y)

Posterior distribution !
Posterior Mean estimator
(MP)

✓̂
PM

=

Z
✓p (✓|X ) d✓
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y

i

= �T� (x
i

) + ✏
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Example 1: Medical Diagnosis & Bayes Rule

Example 2: Coin Flipping & Parameter Estimation

Example 3: Temporal Regression & Model Selection

Some Random Thoughts

How to avoid overfitting?

Do cross-validation

Put some regularization: min

�

P
i

��
y

i

� �T� (x
i

)
��2 � � k�k2

Put a prior on the coefficients �

� ⇠ N

�
0, ⌧2

I

�

y

i

|� ⇠ N

⇣
�T� (x

i

) ,�2
⌘

p (Y ,�) = p (Y |�) p (�)

=
Y

i

p (y
i

|�) p (�)

log p (Y ,�) =
X

i

p (y
i

|�) + p (�)

/
X

i

�
1

2�2

���y
i

� �T� (x
i

)
���

2
�

1
2⌧2 k�k2

/ (�
1

2�2 )
X

i

���y
i

� �T� (x
i

)
���

2
+

�2

⌧2 k�k2

Regularization actually equivalent to putting a prior!
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Dirichlet Process
stochastic process whose
realization is a probability
distribution
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H : base measure
↵ : concentration parameter
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Imagine a restaurant with countable infinitely many tables

First customer always chooses the first table
The i

th customer chooses:
unoccupied table with probability: ↵/ (i � 1 + ↵)
occupied table with probability: m

k

/ (i � 1 + ↵) where m

k

is

number of people sitting at that table.
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Assumptions lead to different models
Factor Analysis
Principal Component Analysis
Independent Component Analysis
...
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Indian Buffet Process

y

n

= Zx

n

+ ✏
n

IBP places a prior distribution over binary matrices where the
number of columns (latent features) K ! 1.
Matrix Z

N⇥K

⇠ IBP (↵) with ↵ : concentration parameter.
Each element z

nk

2 {0, 1} indicates whether the k

th feature
contributes to the n

th data point.
For finite number of data points N, number of non-zero
columns K

+ is finite.
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Culinary Metaphor [Gershman & Blei, 2012]
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Linear Mixed Model

y
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= x
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+ ✏
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b

i

⇠ P

P ⇠ DP (↵, P0)

P = random effects distribution
[Bush & MacEachern (1996), Müller & Rosner (1997), Kleinman & Ibrahim (1998),
Ishwaran & Takahara (2002),...]
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joint distribution

Melanie F. Pradier Bayesian Non-parametrics for Biomedical Applications



37/45

Bayesian Modeling

Bayesian Non-parametrics

Biomedical Applications

Conclusions

Linear Mixed Model

Functional Data Analysis

Cancer subpopulation

Clustering Hormone Curves
[Ray & Mallick (2006)]

Progesterone measured across menstrual cycle (172 women)
One approach: multivariate spline model with DP on distribution of basis
coefficients
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Evolution of cancer subpopulation

[Deshwar, 2014]
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Summary: Bayesian Non-Parametrics

Advantages
good predictive
performance
flexible
robust to overfitting
model-based
interpretability

borrowing information

dimensionality

reduction

Limitations
Scalability
Expert knowledge
into priors difficult
Some
inconsistencies
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Software Available

[Gershman & Blei, 2012]
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Discussion
Large Support despite of Inconsistency Issues

Miller, Harrison, Inconsistency of Pitman-Yor Process Mixtures for the Number

of Components.

[Peter Orbanz & Yee Whye Teh, MLSS 2011]
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Discussion
Automatic Vs Tailored Models: What do we want?
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The End

Statistical Learning Cycle [Gelman 2004]

Thank you!

Looking forward to
your questions. . .
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