Bayesian Nonparametric Models: An Application to International Trade

Melanie F. Pradier

Wednesday $13^{\text {th }}$ September, 2017

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

... but are we making the outmost out of data?

Motivation

An example: personalized medicine

Motivation

An example: personalized medicine

Percentage of the patient population for which a particular drug in a class is ineffective, on average

Source: Brian B. Spear, Margo Heath-Chiozzi, Jeffrey Huff, "Clinical Trends in
Molecular Medicine." Volume 7. Issue 5. 1 May 2001. pages 201-204

Motivation

An example: personalized medicine

Percentage of the patient population for which a particular drug in a class is ineffective, on average

Source: Brian B. Spear, Margo Heath-Chiozzi, Jeffrey Huff, "Clinical Trends in
Molecular Medicine." Volume 7. Issue 5. 1 May 2001. pages 201-204

Motivation

An example: personalized medicine

Percentage of the patient population for which a particular drug in a class is ineffective, on average

Source: Brian B. Spear, Margo Heath-Chiozzi, Jeffrey Huff, "Clinical Trends in
Molecular Medicine," Volume 7, Issue 5, 1 May 2001, pages 201-204.

Motivation

An example: personalized medicine

Percentage of the patient population for which a particular drug in a class is ineffective, on average

Source: Brian B. Spear, Margo Heath-Chiozzi, Jeffrey Huff, "Clinical Trends in
Molecular Medicine," Volume 7, Issue 5, 1 May 2001, pages 201-204.

Motivation

An example: personalized medicine

Percentage of the patient population for which a particular drug in a class is ineffective, on average

Source: Brian B. Spear, Margo Heath-Chiozzi, Jeffrey Huff, "Clinical Trends in
Molecular Medicine," Volume 7, Issue 5, 1 May 2001, pages 201-204.

Motivation

An example: personalized medicine

Percentage of the patient population for which a particular drug in a class is ineffective, on average

ANTI-DEPRESSANTS SSRIs	38\%	
ASTHMA DRUGS	40\%	
DIABETES DRUGS	43\%	
ARTHRITIS DRUGS	50\%	
ALZHEIMER'S DRUGS	70\%	
CANCER DRUGS	75\%	

Challenges

- Complexity
- Missing data
- Small data within big data
- ...
- Research focus
\rightarrow data exploration

Source: Brian B. Spear, Margo Heath-Chiozzi, Jeffrey Huff, "Clinical Trends in
Molecular Medicine." Volume 7, Issue 5, 1 May 2001, pages 201-204.

Motivation

An example: personalized medicine

Percentage of the patient population for which a particular drug

 in a class is ineffective, on average

Challenges

- Complexity
- Missing data
- Small data within big data
- ...
- Research focus
\rightarrow data exploration
- Interpretability

Source: Brian B. Spear, Margo Heath-Chiozzi, Jeffrey Huff, "Clinical Trends in
Molecular Medicine," Volume 7, Issue 5, 1 May 2001, pages 201-204.

Motivation

Focus: data exploration

Interpretability

[F. Doshi-Velez, B. Kim, Towards A Rigorous Science of Interpretable Machine Learning]

- Understandable for humans (Doshi-Velez, 2017)
- "Right to explanation" (EU General Data Protection Regulation, 2018)

Motivation

Focus: data exploration

Interpretability

[F. Doshi-Velez, B. Kim, Towards A Rigorous Science of Interpretable Machine Learning]

- Understandable for humans (Doshi-Velez, 2017)
- "Right to explanation" (EU General Data Protection Regulation, 2018)

Main goal

- Knowledge discovery
- Hypothesis generation

Motivation

Focus: data exploration

Interpretability

[F. Doshi-Velez, B. Kim, Towards A Rigorous Science of Interpretable Machine Learning]

- Understandable for humans (Doshi-Velez, 2017)
- "Right to explanation" (EU General Data Protection Regulation, 2018)

Main goal

- Knowledge discovery
- Hypothesis generation

Our Approach
 Bayesian nonparametrics

Why Bayesian nonparametrics?

- Bayesian: combine prior knowledge with data evidence

Why Bayesian nonparametrics?

- Bayesian: combine prior knowledge with data evidence

[Bishop, 2006]

Why Bayesian nonparametrics?

- Bayesian: combine prior knowledge with data evidence

[Bishop, 2006]

- Nonparametric
- actually... really large parametric model

Why Bayesian nonparametrics?

- Bayesian: combine prior knowledge with data evidence

- Nonparametric
- actually... really large parametric model
- number of latent variables grows with data

Why Bayesian nonparametrics?

- Bayesian: combine prior knowledge with data evidence

[Bishop, 2006]

In this talk...

- Nonparametric
- actually... really large parametric model
- number of latent variables grows with data

Outline

(1) Introduction
(2) Bayesian nonparametrics
(3) BNP models for international trade
(4) Conclusion

Bayesian nonparametrics (BNPs)

- Bayesian framework for model selection
- Nonparametric: number of parameters grows with the amount of data:
- Prior over infinite-dimensional parameter space
- Only a finite subset of parameters is used for any finite dataset

Bayesian nonparametrics (BNPs)

- Bayesian framework for model selection
- Nonparametric: number of parameters grows with the amount of data:
- Prior over infinite-dimensional parameter space
- Only a finite subset of parameters is used for any finite dataset
- Rely on stochastic processes:
- Dirichlet process
- Beta process
- Gaussian process
- ...

Dirichlet process (DP)

$$
G \sim \mathrm{DP}(\alpha, H)
$$

$$
G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}
$$

Dirichlet process (DP)

$$
G \sim \mathrm{DP}(\alpha, H)
$$

- often used in mixture models

Dirichlet process (DP)

$$
G \sim \mathrm{DP}(\alpha, H)
$$

Stick-breaking representation

(Ishwaran et.al, 2001)

- often used in mixture models

Dirichlet process (DP)

$$
G \sim \mathrm{DP}(\alpha, H)
$$

Stick-breaking representation

 (Ishwaran et.al, 2001)For $k=1, \cdots, \infty$

$$
G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}
$$

- often used in mixture models

Chinese restaurant process (CRP)

$$
\boldsymbol{c} \sim \operatorname{CRP}(\alpha)
$$

where $\boldsymbol{c} \equiv$ infinite sequence of natural numbers.

(Pitman et.al, 2002)

$$
p\left(c_{i}=m \mid \boldsymbol{c}^{\neg i}, \alpha\right)\left\{\begin{array}{cl}
|m|^{\neg i}, & m \in \boldsymbol{c}^{\neg i} \\
\alpha, & m \notin \boldsymbol{c}^{\neg i}
\end{array}\right.
$$

Indian Buffet Process (Ghahramani et.al, 2006)

Indian Buffet Process (Ghahramani et.al, 2006)

Indian Buffet Process (Ghahramani et.al, 2006)

$\xrightarrow[Z \sim \operatorname{IBP}(\alpha)]{ } Z=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$

Indian Buffet Process (Ghahramani et.al, 2006)

- IBP: distribution over binary matrices $Z_{N \times K}$
- Model chooses number of hidden features, $K \rightarrow \infty$

Indian Buffet Process (IBP)

(Slide from F. J.R. Ruiz)

Indian Buffet Process (IBP)

(Slide from F. J.R. Ruiz)

Indian Buffet Process (IBP)

(Slide from F. J.R. Ruiz)

Indian Buffet Process (IBP)

(Slide from F. J.R. Ruiz)

Indian Buffet Process (IBP)

(Slide from F. J.R. Ruiz)

Indian Buffet Process (IBP)

(Slide from F. J.R. Ruiz)

Indian Buffet Process (IBP)

(Slide from F. J.R. Ruiz)

Indian Buffet Process (IBP)

(Slide from F. J.R. Ruiz)

1	1	1	0	0	0
1	0	1	1	0	0
0	1	1	0	1	1

Indian Buffet Process (IBP)

(Slide from F. J.R. Ruiz)

Indian buffet process (IBP)

- Prior over binary matrices with infinite number of columns
- Rows \equiv observations; columns \equiv features
- $\mathbf{Z} \sim \operatorname{IBP}(\alpha)$
- α : concentration parameter
- Each element $z_{n k}$ indicates whether the k-th feature contributes to observation n

Indian buffet process (IBP)

An alternative construction

hierarchy of a Beta process (BP) with multiple Bernoulli processes (BeP)
\Rightarrow infinite latent feature model

$$
G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}} \sim \operatorname{BP}(c, \alpha, H)
$$

Indian buffet process (IBP)

An alternative construction

hierarchy of a Beta process (BP) with multiple Bernoulli processes (BeP)
\Rightarrow infinite latent feature model

$$
G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}} \sim \operatorname{BP}(c, \alpha, H)
$$

1

Indian buffet process (IBP)

An alternative construction

Indian buffet process (IBP)

An alternative construction

Indian buffet process (IBP)

An alternative construction

Outline

(1) Introduction
(2) Bayesian nonparametrics
(3) BNPs for international trade
(4) Conclusion

Motivation: wealth of nations

What makes some countries wealthier than others?

Motivation: wealth of nations

What makes some countries wealthier than others?

Motivation: wealth of nations

What makes some countries wealthier than others?

Motivation: wealth of nations

What makes some countries wealthier than others?

Motivation: wealth of nations

What makes some countries wealthier than others?

Motivation: wealth of nations

The reality:

$$
\begin{aligned}
\mathrm{RCA}_{n d} & =\frac{E_{n d} / \sum_{p} E_{n d}}{\sum_{n} E_{n d} / \sum_{n, d} E_{n d}} \\
x_{n d} & = \begin{cases}1, & \text { if } \mathrm{RCA}_{n d} \geq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Motivation: wealth of nations

The reality:

Properties:

$$
\begin{aligned}
\mathrm{RCA}_{n d} & =\frac{E_{n d} / \sum_{p} E_{n d}}{\sum_{n} E_{n d} / \sum_{n, d} E_{n d}} \\
x_{n d} & = \begin{cases}1, & \text { if } \mathrm{RCA}_{n d} \geq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Motivation: wealth of nations

The reality:

Properties:

(1) Triangularity

$$
\begin{aligned}
\mathrm{RCA}_{n d} & =\frac{E_{n d} / \sum_{p} E_{n d}}{\sum_{n} E_{n d} / \sum_{n, d} E_{n d}} \\
x_{n d} & = \begin{cases}1, & \text { if } \mathrm{RCA}_{n d} \geq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Motivation: wealth of nations

The reality:

$$
\begin{aligned}
\mathrm{RCA}_{n d} & =\frac{E_{n d} / \sum_{p} E_{n d}}{\sum_{n} E_{n d} / \sum_{n, d} E_{n d}} \\
x_{n d} & = \begin{cases}1, & \text { if } \mathrm{RCA}_{n d} \geq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Motivation: wealth of nations

The reality:

$$
\begin{aligned}
\mathrm{RCA}_{n d} & =\frac{E_{n d} / \sum_{p} E_{n d}}{\sum_{n} E_{n d} / \sum_{n, d} E_{n d}} \\
x_{n d} & = \begin{cases}1, & \text { if } \mathrm{RCA}_{n d} \geq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Properties:

(1) Triangularity
(2) $D \gg N$

Our Approach

Develop an infinite Poisson factor analysis model...

- flexible prior
- feature sparsity

Bernoulli process Poisson factor analysis (BeP-PFA)

Bernoulli process Poisson factor analysis (BeP-PFA)

Generative Model

$$
\begin{aligned}
x_{n d} & \sim \operatorname{Poisson}\left(\mathbf{Z}_{n} \cdot \mathbf{B}_{\bullet}\right) \\
B_{k d} & \sim \operatorname{Gamma}\left(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}}\right) \\
\mathbf{Z} & \sim \operatorname{IBP}(\alpha)
\end{aligned}
$$

Limitations of the IBP

- Mass parameter α couples both J_{n} and K^{+}

Limitations of the IBP

- Mass parameter α couples both J_{n} and K^{+}

Beyond the standard IBP

Three-parameter IBP
 (Teh et.al, 2007)

- More flexible distribution for feature weights

$$
\begin{align*}
\mathbf{Z}_{n} \bullet & \sim \operatorname{BeP}(\mu) \tag{3.1}\\
\mu & \sim \operatorname{SBP}(1, \alpha, H, c, \sigma) \tag{3.2}
\end{align*}
$$

$p\left(J_{\text {new }}\right) \sim$ Poisson $\left(\boldsymbol{\alpha} \frac{\Gamma(1+\mathbf{c}) \Gamma(n+\mathbf{c}+\boldsymbol{\sigma}-1)}{\Gamma(n+\mathbf{c}) \Gamma(\mathbf{c}+\boldsymbol{\sigma})}\right)$

Beyond the standard IBP

Three-parameter IBP

(Teh et.al, 2007)

- More flexible distribution for feature weights

$$
\begin{align*}
\mathbf{Z}_{n} \bullet & \sim \operatorname{BeP}(\mu) \tag{3.1}\\
\mu & \sim \operatorname{SBP}(1, \alpha, H, c, \sigma) \tag{3.2}
\end{align*}
$$

$p\left(J_{\text {new }}\right) \sim$ Poisson $\left(\boldsymbol{\alpha} \frac{\Gamma(1+\mathbf{c}) \Gamma(n+\mathbf{c}+\boldsymbol{\sigma}-1)}{\Gamma(n+\mathbf{c}) \Gamma(\mathbf{c}+\boldsymbol{\sigma})}\right)$

Beyond the standard IBP

Three-parameter IBP
 (Teh et.al, 2007)

- More flexible distribution for feature weights

$$
\begin{align*}
\mathbf{Z}_{n} \bullet & \sim \operatorname{BeP}(\mu) \tag{3.1}\\
\mu & \sim \operatorname{SBP}(1, \alpha, H, c, \sigma) \tag{3.2}
\end{align*}
$$

$p\left(J_{\text {new }}\right) \sim$ Poisson $\left(\boldsymbol{\alpha} \frac{\Gamma(1+\mathbf{c}) \Gamma(n+\mathbf{c}+\boldsymbol{\sigma}-1)}{\Gamma(n+\mathbf{c}) \Gamma(\mathbf{c}+\boldsymbol{\sigma})}\right)$

Restricted IBP

(Doshi-Velez et.al, 2015)

- Arbitrary prior f over J_{n}

$$
\begin{equation*}
\mathbf{Z}_{n} \bullet \sim \operatorname{R-BeP}(\mu, f) \tag{3.3}
\end{equation*}
$$

Beyond the standard IBP

Three-parameter IBP
 (Teh et.al, 2007)

- More flexible distribution for feature weights

$$
\begin{align*}
\mathbf{Z}_{n} \bullet & \sim \operatorname{BeP}(\mu) \tag{3.1}\\
\mu & \sim \operatorname{SBP}(1, \alpha, H, c, \sigma) \tag{3.2}
\end{align*}
$$

$p\left(J_{\text {new }}\right) \sim$ Poisson $\left(\boldsymbol{\alpha} \frac{\Gamma(1+\mathbf{c}) \Gamma(n+\mathbf{c}+\boldsymbol{\sigma}-1)}{\Gamma(n+\mathbf{c}) \Gamma(\mathbf{c}+\boldsymbol{\sigma})}\right)$

Restricted IBP

(Doshi-Velez et.al, 2015)

- Arbitrary prior f over J_{n}

$$
\begin{align*}
\mathbf{Z}_{n} & \sim \operatorname{R-BeP}(\mu, f) \tag{3.3}\\
\mu & \sim \operatorname{BP}(1, \alpha, H) \tag{3.4}
\end{align*}
$$

- Combination of both
- Flexible prior

Our Approach

Generative Model

$$
\begin{align*}
& x_{n d} \sim \operatorname{Poisson}\left(\mathbf{Z}_{n \bullet} \cdot \mathrm{~B}_{\bullet d}\right) \tag{3.5}\\
& B_{k d} \sim \operatorname{Gamma}\left(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}}\right) \tag{3.6}\\
& \mathbf{Z}_{n \bullet} \sim 3 \operatorname{R}-\operatorname{IBP}(\alpha, c, \sigma, f) \tag{3.7}
\end{align*}
$$

Results in static scenario

Quantitative analysis: accuracy Vs interpretability

Metric	PMF	NNMF	BeP-PFA	SBeP-PFA	3RBeP-PFA
Log Perplexity	1.68 ± 0.01	1.61 ± 0.01	$\mathbf{1 . 5 9} \pm \mathbf{0 . 0 4}$	3.26 ± 0.17	1.62 ± 0.01
Coherence	-264.60 ± 4.74	-263.27 ± 7.45	-149.36 ± 7.56	-178.44 ± 4.50	$-\mathbf{1 4 0 . 5 1} \pm \mathbf{2 . 7 3}$
	(a) 2010 SITC database $(N=126, D=744)$				
Metric	PMF	NNMF	BeP-PFA	SBeP-PFA	3RBeP-PFA
Log Perplexity	1.48 ± 0.01	$\mathbf{1 . 4 7} \pm \mathbf{0 . 0 1}$	1.58 ± 0.01	2.56 ± 0.12	1.57 ± 0.02
Coherence	-264.73 ± 3.11	-264.67 ± 6.22	-148.91 ± 10.57	-168.39 ± 13.16	$-\mathbf{1 3 4 . 5 1} \pm \mathbf{4 . 4 3}$

(b) 2010 HS database $(N=123, D=4890)$

Results in static scenario

Capturing input sparsity structure

Results

Interpretability

F0: Bias	F1: Agriculture	F2: Clothing I		F3: Farming		F4: Clothing II
Non-Coniferous Worked Wood Bran and Other Cereals Residues Misc. Non-Iron Waste	Vegetables Fruit or Vegetable Juices Misc. Fruit	Synthetic Knitted Undergarments Misc. Feminine Outerwear Misc. Knitted Outerwear		Misc. Animal Oils Bovine and Equine Entrails Bovine meat	Synthetic Woven Fabrics Non-retail Synthetic Yarn Woven Fabric $<85 \%$ Discontinuous Synthetic Fibres	
F5: Electronics I	F6: Processed Materials	F7: Electronics II		F8: Materi		F9: Machin
Misc. Electrical Machinery Vehicles Stereos Misc. Data Processing Equipment	Baked Goods Metal Containers Misc. Edibles	Measuring Controlling Instruments Mathematical Calculation Instruments Misc. Electrical Instruments		Misc. Article Carpentry Misc. Manufactured	of Iron ood Wood Articles	Misc. Rotating Electric Plant Parts Control Instruments of Gas or Liquid Valves
F10: Materials II	F11: Automobile	F12: Chemicals I	F13: Chemicals II	F14: M	ry II	F15: Miscellaneous
Improved Wood Ve Mineral Wool Central Heating Equipment	Vehicles Parts - Accessories Cars Iron Wire	Synthetic Rubber Acrylic Polymers Silicones	Aldehyde, Ketone Glycosides, Vaccines Medicaments	Parts of Metalwork Interchangeab Polishing	g Machine Tool Tool Parts Stones	Misc. Pumps Ash and Residues Chemical Wood Pulp of sulphite

Results

Interpretability

Top Products (decay 30\%)	$B_{k d}$		
Bovine	0.49		
Miscellaneous Refrigeration Equipment	0.43		
Radioactive Chemicals	0.41		
Blocks of Iron and Steel	0.41	Top Products (decay 30\%)	$B_{k d}$
Rape Seeds	0.40		
Animal meat, misc	0.39	Miscellaneous Animal Oils	0.78
Refined Sugars	0.38	Bovine and Equine Entrails	0.72
Miscellaneous Tire Parts	0.38	Bovine meat	0.68
Leather Accessories	0.38	Preserved Milk	0.63
Liquor	0.38	Equine	0.62
Bovine meat	0.38	Butter	0.58
Embroidery	0.37	Misc. Animal Origin Materials	0.57
Unmilled Barley	0.37	Glues	0.56
Dried Vegetables	0.36	(d) S3R-IBP	
Textile Fabrics Clothing Accessories	0.36		
Horse Meat	0.35		
Iron Bars and Rods	0.35		
Analog Navigation Devices	0.35		

Deep S3R-IBP: using a 2nd layer

(1) "Simple" and "advanced" capabilities
(2) Countries divided in two big groups: "quiescence" trap.

Deep S3R-IBP: using a 2nd layer

(1) "Simple" and "advanced" capabilities
(2) Countries divided in two big groups: "quiescence" trap.

	1	1	1	1	\mid		\mid		
0	1	2	3	4	5	6	7	8	9

Temporal Dynamics

Capabilities	
F0	Bias
F1	Agriculture
F2	Clothing I
F3	Farming
F4	Clothing II
F5	Electronics I
F6	Processed Materials
F7	Electronics II
F8	Materials I
F9	Machinery I
F10	Materials II
F11	Automobile
F12	Chemicals I
F13	Chemicals II
F14	Machinery II
F15	Miscellaneous

(a) Chile

(b) Indonesia

(c) Egypt

Model extension: Dynamic PFA

Model extension: dynamic PFA

Id	Top-3 products with highest weights
F0	(bias) crude petroleum, crustaceans, cereals
F1	light fixtures, locksmith hardw., misc. ceramic ornaments
F2	inorganic esters, chemical products, nitrogen compound
F3	iron sheets, iron wire, thin iron sheets
F4	misc. elect. machinery, typewriters, misc. office equipment
F5	soaps, confectionary sugar, baked goods
F6	bovine - equine entrails, bovine meat, misc. prepared meats
F7	knit clothing accessories, linens, leather accessor.
F8	glazes, textiles fabrics for machinery, mineral wool
F9	misc. vegetables, grapes - raisins, misc. fruit
F10	inorganic bases, nitrogenous fertilizers, lubricating petrol. oils
F11	imitation jewellery, embroidery, synth. precious stones
F12	coffee, non-coniferous worked wood, cane sugar
F13	copper ores, chemical wood pulp, misc. non-ferrous ores
F14	pepper, vegetable planting materials, natural rubber
F15	raw cotton, cotton linters, green groundnuts

Conclusion

(1) BNP model for data exploration in high-dim count data.
(2) interpretable and structured solutions.
(3) Analysis of productive structure of world economies.

4 Time-varying feature activation.

Conclusion

(1) BNP model for data exploration in high-dim count data.
(2) interpretable and structured solutions.
(3) Analysis of productive structure of world economies.

4 Time-varying feature activation.

Future works

- Improve inference in dynamic scenario.

Conclusion

(1) BNP model for data exploration in high-dim count data.
(2) interpretable and structured solutions.
(3) Analysis of productive structure of world economies.
(4) Time-varying feature activation.

Future works

- Improve inference in dynamic scenario.

Thank you for listening! Any question?
melanie@tsc.uc3m.es

Sources and References

C. Bishop: Pattern Recognition and Machine Learning, 2006.K. P. Murphy: Machine Learning: a Probabilistic Perspective, 2012.D. J.C. MacKay: Information Theory, Inference, and Learning Algorithms, 2003.S. J. Gershman, D.M. Blei: A tutorial on Bayesian nonparametric models, 2012.
Y.W. Teh: Slides for Probabilistic and Bayesian Machine Learning, UC3M, 2010.
M. N. Schmidt \& M. Morup: Advanced Topics in Machine Learning, MLSS, DTU, 2013.D. B. Dunson: Nonparametric Bayes Applications to Biostatistics, 2010.

Appendix: About inference

- Markov Chain Monte Carlo approach.
- Conditional conjugacy using auxiliary variables.

$$
x_{n d}=\sum^{K} x_{n d, k}^{\prime} \quad \text { where } \quad x_{n d, k}^{\prime} \sim \operatorname{Poisson}\left(\mathbf{Z}_{n \bullet} \mathbf{B}_{\bullet d}\right)
$$

- Truncated approximation of feature weights
- In 3RBeP-PFA, dynamic programming to compute likelihood (Doshi-Velez et.al, 2015)
- In dBeP-PFA, forward-filtering backward-sampling procedure (Gael et.al, 2009)

Appendix: Results

Interpretability

Countries in latent space

Appendix: Results
 Interpretability

Countries in latent space

- France $=$ Belgium + ?
- Germany - ? = Austria
- Malaysia (Electronics) + ? \rightarrow Phillipines
- Phillipines + ? \rightarrow Indonesia, Vietnam

Appendix: Results
 Interpretability

Countries in Capability Space

- France $=$ Belgium + Industrial Machinery
- Germany - Chemical = Austria
- Malaysia (Electronics) + Clothing \rightarrow Phillipines
- Phillipines + Basic Processing \rightarrow Indonesia, Vietnam

Appendix: modeling in dynamic scenario

Dynamic PFA

- T timestamps (years)
- markov IBP to account for temporal dynamics (Gael et.al, 2009)

$$
\begin{aligned}
x_{n d}^{(t)} & \sim \operatorname{Poisson}\left(\mathbf{Z}_{n \bullet}^{(t)} \mathbf{B} \cdot d\right) \\
B_{k d} & \sim \operatorname{Gamma}\left(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}}\right) \\
a_{k} & \sim \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right) \\
b_{k} & \sim \operatorname{Beta}(\gamma, \delta) \\
z_{n k}^{(t)} \mid a_{k}, b_{k} & \sim \operatorname{Bernoulli}\left(a_{k}^{1-z_{n k}^{(t-1)}} b_{k}^{z_{n k}^{(t-1)}}\right)
\end{aligned}
$$

- Generative model:

The transition matrix Q_{k} for feature k is given by:

$$
Q_{k}=\left(\begin{array}{cc}
1-a_{k} & a_{k} \\
1-b_{k} & b_{k}
\end{array}\right)
$$

Appendix: inference in dynamic scenario

Inference

- MCMC approach, e.g., Gibbs sampler + slice sampler for the IBP
- K Poisson-distributed auxiliary random variables, i.e., $x_{n d}^{(t)}=\sum_{k=1}^{K} r_{n d, k}^{(t)}$
- Forward Filtering Backward Sampling (FFBS) to approximate $p(\mathbf{Z} \mid \mathbf{X}, \mathbf{B})$

$$
p\left(\mathbf{X}_{n \bullet}^{(1: t)}, z_{n k}^{(t)} \mid-\right)=p\left(\mathbf{X}_{n \bullet}^{(t)} \mid z_{n k}^{(t)},-\right) \sum_{z_{n k}^{(t-1)}} p\left(\mathbf{X}_{n \bullet}^{(1: t-1)}, z_{n k}^{(t-1)} \mid-\right) p\left(z_{n k}^{(t)} \mid z_{n k}^{(t-1)}\right)
$$

- Forward step: compute $p\left(z_{n k}^{(t)} \mid \mathbf{X}_{n \bullet}^{(1: t)}, \mathbf{Z}_{n, \neg k}^{(t)}, \mathbf{B}\right)$
- Backward step: sample from $p\left(z_{n k}^{(t)} \mid z_{n k}^{(t+1)}, \mathbf{X}_{n \bullet}^{(1: t)}, \mathbf{Z}_{n, \neg k}^{(t)}, \mathbf{B}\right)$

