Towards better uncertainty in Bayesian Neural Networks

Wednesday 19th, December 2018
Melanie F. Pradier

airplane	2－1			$\%$	－	3	Y	\cdots
automobile					点-1		［	T－a
bird	5	J	2		4	7	3	313
cat	PE	3		6．5．08			5	（c）${ }^{3}$
deer		2	6	NF30］	8	17	${ }_{6}$	
dog	敕	t．	\times	0	93	0	（4）	（i）${ }^{3}$
frog	－	3		这碞				－
horse	國	1	（3）	20	1011	F－7	270	（x）
ship	\cdots	8		19	\square	\square	2	2
truck		諸			ars			

［Silver et．al，2017］

［Zhu et．al，2018］
［He et．al，2018］

airplane	2－1			$\%$	－	3	Y	\cdots
automobile					点-1		［	T－a
bird	5	J	2		4	7	3	313
cat	PE	3		6．5．08			5	（c）${ }^{3}$
deer		2	6	NF30］	8	17	${ }_{6}$	
dog	敕	t．	\times	0	93	0	（4）	（i）${ }^{3}$
frog	－	3		这碞				－
horse	國	1	（3）	20	1011	F－7	270	（x）
ship	\cdots	8		19	\square	\square	2	2
truck		諸			ars			

［Silver et．al，2017］

［Zhu et．al，2018］
［He et．al，2018］

airplane	2－1			$\%$	－	3	Y	\cdots
automobile					点-1		［	T－a
bird	5	J	2		4	7	3	313
cat	PE	3		6．5．08			5	（c）${ }^{3}$
deer		2	6	NF30］	8	17	${ }_{6}$	
dog	敕	t．	\times	0	93	0	（4）	（i）${ }^{3}$
frog	－	3		这碞				－
horse	國	1	（3）	20	1011	F－7	270	（x）
ship	\cdots	8		19	\square	\square	2	2
truck		諸			ars			

［Silver et．al，2017］

［Zhu et．al，2018］
［He et．al，2018］

	mushroom		
convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grape	spider monkey
pickup	jelly fungus	derberry	titi
beach wagon	gill fungus	ffordshire bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

[Eykholt et.al, 2018]

[Nirschi et.al, 2018]

Deep Learning errors

 False Positives False Negatives

[Nirschi et.al, 2018]
Deep Learning errors False Positives False Negatives

Our Goal:

$$
\begin{aligned}
& \mathbf{x} \rightarrow f_{w} \rightarrow \mathbf{y} \\
& \mathbf{y}=f_{w}(\mathbf{x})+\boldsymbol{\epsilon}
\end{aligned}
$$

Quantify Uncertainty

With such uncertainty, we can:

- Alert humans in unclear situations
- Diagnose ML systems (when and how does it fail)
- Get better predictive accuracy

Overview

Two sources of uncertainty

[Depeweg et.al, 2017]

Overview

Two sources of uncertainty

[Depeweg et.al, 2017]

Overview

Two sources of uncertainty

[Depeweg et.al, 2017]

In this talk...

- Approximate $f_{\boldsymbol{w}}$ with a Bayesian Neural Network

- Modeling + inference contributions

How to estimate function uncertainty?

How to estimate function uncertainty?

Gaussian Process (GP)

[Rasmussen et.al, 2016]

 $f(x) \sim \operatorname{GP}\left(m(x), k\left(x, x^{\prime}\right)\right)$

How to estimate function uncertainty?

Gaussian Process (GP)

[Rasmussen et.al, 2016]

$$
f(x) \sim \operatorname{GP}\left(m(x), k\left(x, x^{\prime}\right)\right)
$$

Drawbacks of GPs

- Scalability
- Kernel learning is not trivial

How to estimate function uncertainty?

Gaussian Process (GP)

$$
f(x) \sim \operatorname{GP}\left(m(x), k\left(x, x^{\prime}\right)\right)
$$

Drawbacks of GPs

- Scalability
- Kernel learning is not trivial

Alternative: Neural Networks with uncertainty

- Ensemble of Neural Networks
[Lakshminarayanan et al., 2017; Pearce et.al, 2018]
- Bayesian Neural Networks
[Buntine et al., 1991; MacKay, 1992; Neal, 1993]

Bayesian Neural Network (BNN)

average loss: $\mathbf{0 . 2 5 5 0 3 4 1 4 5 7 9 3 6 4 9 2}$

$$
\begin{aligned}
& \boldsymbol{y}=f_{\boldsymbol{w}}(\boldsymbol{x})+\boldsymbol{\epsilon} \quad \mathcal{D}=\left\{\mathbf{x}_{i}, \mathbf{y}_{i}\right\}_{i=1}^{N} \\
& \boldsymbol{w} \sim \mathcal{N}\left(0, \sigma_{w}^{2} \mathbf{I}\right), \quad \boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2} \mathbf{I}\right)
\end{aligned}
$$

[What my deep model does not know, post of Yarin Gal, 2015]

Bayesian Neural Network (BNN)

[What my deep model does not know, post of Yarin Gal, 2015]

$$
\begin{array}{lc}
\boldsymbol{y}=f_{\boldsymbol{w}}(\boldsymbol{x})+\boldsymbol{\epsilon} & \mathcal{D}=\left\{\mathbf{x}_{i}, \mathbf{y}_{i}\right\}_{i=1}^{N} \\
\boldsymbol{w} \sim \mathcal{N}\left(0, \sigma_{w}^{2} \mathbf{I}\right), \quad \boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2} \mathbf{I}\right)
\end{array}
$$

Quantities of interest:

- Posterior of the weights $p(w \mid \mathcal{D})$
- Predictive distribution

$$
p\left(\mathbf{y}^{\star} \mid \mathbf{x}^{\star}, \mathcal{D}\right)=\int p\left(\mathbf{y}^{\star} \mid \mathbf{x}^{\star}, \boldsymbol{w}\right) p(\boldsymbol{w} \mid \mathcal{D}) d \boldsymbol{w}
$$

$p(\boldsymbol{w} \mid \mathcal{D})$

is intractable!

$p(\boldsymbol{w} \mid \mathcal{D})$
 is intractable!

Inference options:

- Markov Chain Monte Carlo

Hamiltonian Monte Carlo [Neal, 1993]

- Variational Inference
[Graves, 1993] [Blundell et.al, 2015]

Variational Inference for BNNs

Objective: approximate $p(\boldsymbol{w} \mid \mathcal{D})$

$$
+p(\boldsymbol{w} \mid \mathcal{D})
$$

$$
\begin{aligned}
& q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \in \mathcal{Q} \\
& \underset{\lambda^{*}}{\operatorname{argmin}} D_{\mathrm{KL}}\left(q_{\lambda}(\boldsymbol{w}) \| p(\boldsymbol{w} \mid \mathcal{D})\right)
\end{aligned}
$$

Variational Inference for BNNs

Objective: approximate $p(\boldsymbol{w} \mid \mathcal{D})$ $+p(\boldsymbol{w} \mid \mathcal{D})$

$$
\begin{aligned}
& q_{\lambda}(\boldsymbol{w}) \in \mathcal{Q} \\
& \underset{\lambda^{+}}{\operatorname{argmin}} D_{\mathrm{KL}}\left(q_{\lambda}(\boldsymbol{w}) \| p(\boldsymbol{w} \mid \mathcal{D})\right) \\
& \quad \sqrt{幺}
\end{aligned}
$$

$\underset{\lambda^{\star}}{\operatorname{argmax}} \mathcal{L}(\boldsymbol{\lambda})=\mathbb{E}_{q}[\log p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{w})]-D_{\mathrm{KL}}\left(q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \| p(\boldsymbol{w})\right)$

Variational Inference for BNNs

Objective: approximate $p(\boldsymbol{w} \mid \mathcal{D})$

$\underset{\boldsymbol{\lambda}^{\star}}{\operatorname{argmax}} \mathcal{L}(\boldsymbol{\lambda})=\mathbb{E}_{q}[\log p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{w})]-D_{\mathrm{KL}}\left(q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \| p(\boldsymbol{w})\right)$
Black-box VI [Ranganath et.al, 2013] + reparametrization trick [Kingma et.al, 2014; Rezende et.al, 2015]

Variational Inference for BNNs

Objective: approximate $p(\boldsymbol{w} \mid \mathcal{D})$

Black-box VI [Ranganath et.al, 2013] + reparametrization trick [Kingma et.al, 2014; Rezende et.al, 2015]

Is mean-field VI good enough?

Is mean-field VI good enough?

$\xrightarrow{w_{2} \uparrow \quad$| $\quad \text { Exact Posterior }$ |
| :--- |
| $q_{\boldsymbol{\lambda}}(\boldsymbol{w})=\prod_{i=1}^{I} q_{\boldsymbol{\lambda}_{i}}\left(\boldsymbol{w}_{i}\right)$ |$}$| \mathbf{w}_{1} |
| :--- |
| Under-estimation of
 uncertainty! |

Example on solar irradiance dataset [Gal et.al, 2015]

BNN

Is mean-field VI good enough?

Example on solar irradiance dataset [Gal et.al, 2015]

BNN

Standard BNN Modeling

$$
\begin{aligned}
& \boldsymbol{y}=f_{\boldsymbol{w}}(\boldsymbol{x})+\boldsymbol{\epsilon}, \boldsymbol{w} \sim \mathcal{N}\left(0, \sigma_{w}^{2} \mathbf{I}\right), \\
& \boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2} \mathbf{I}\right)
\end{aligned}
$$

Weight redundancy [Denil et.al, 2013]

Latent-Projection BNN Modeling

$$
\begin{aligned}
& \boldsymbol{y}=f_{\boldsymbol{w}}(\boldsymbol{x})+\boldsymbol{\epsilon}, w=g_{\phi}(\boldsymbol{z}), \quad z \sim p(\boldsymbol{z}), \quad \phi \sim p(\phi), \\
& \boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2} \mathbf{I}\right)
\end{aligned}
$$

How about inference?

Objective: approximate $p(\boldsymbol{w} \mid \mathcal{D})$
$+p(\boldsymbol{w} \mid \mathcal{D})$

$$
\begin{aligned}
& q_{\boldsymbol{\lambda}}(\boldsymbol{w}) \in \mathcal{Q} \\
& \underset{\lambda^{+}}{\operatorname{argmin}} D_{\mathrm{KL}}\left(q_{\lambda}(\boldsymbol{w}) \| p(\boldsymbol{w} \mid \mathcal{D})\right) \\
&
\end{aligned}
$$

$$
\underset{\lambda^{*}}{\operatorname{argmax}} \mathcal{L}(\boldsymbol{\lambda})=\mathbb{E}_{q}[\log p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{w})]-D_{\mathrm{KL}}\left(q_{\lambda}(\boldsymbol{w}) \| p(\boldsymbol{w})\right)
$$

How about inference?

Objective: approximate $p(z, \phi \mid \mathcal{D})$

+ $p(z, \phi \mid \mathcal{D})$

$$
\begin{aligned}
& z \sim q_{\lambda_{z}}(z), \quad \phi \sim q_{\lambda_{\phi}}(\phi), \quad w=g_{\phi}(z) \\
& \underset{\lambda^{\star}}{\operatorname{argmin}} D_{\mathrm{KL}}\left(q_{\boldsymbol{\lambda}}(z, \phi) \| p(z, \phi \mid \mathcal{D})\right) \\
& \underset{\lambda^{\star}}{\operatorname{argmax}} \mathcal{L}(\boldsymbol{\lambda})=\mathbb{E}_{q}\left[\log p\left(\boldsymbol{y} \mid \boldsymbol{x}, g_{\phi}(z)\right)\right]-D_{\mathrm{KL}}\left(q_{\lambda_{\boldsymbol{z}}}(z) \| p(z)\right)-D_{\mathrm{KL}}\left(q_{\lambda_{0}}(\phi) \| p(\phi)\right)
\end{aligned}
$$

Black-box VI [Ranganath et.al, 2013] + reparametrization trick [Kingma et.al, 2014; Rezende et.al, 2015]

How about inference?

Objective: approximate $p(z, \phi \mid \mathcal{D})$

$$
+p(z, \phi \mid \mathcal{D})
$$

$$
\begin{gathered}
z \sim q_{\boldsymbol{\lambda}_{z}}(z), \quad \phi \sim q_{\lambda_{\phi}}(\phi), \quad w=g_{\phi}(z) \\
\underset{\lambda^{*}}{\operatorname{argmin}} D_{\mathrm{KL}}\left(q_{\boldsymbol{\lambda}}(z, \phi) \| p(z, \phi \mid \mathcal{D})\right) \\
\underset{\substack{\lambda^{*}}}{\operatorname{argmax}} \mathcal{L}(\boldsymbol{\lambda})=\mathbb{E}_{q}\left[\log p\left(\boldsymbol{y} \mid \boldsymbol{x}, g_{\phi}(z)\right)\right]-D_{\mathrm{KL}}\left(q_{\lambda_{z}}(z) \| p(z)\right)-D_{\mathrm{KL}}\left(q_{\lambda_{\phi}}(\phi) \| p(\phi)\right)
\end{gathered}
$$

Black-box VI [Ranganath et.al, 2013] + reparametrization trick [Kingma et.al, 2014; Rezende et.al, 2015]

$\underset{\boldsymbol{\lambda}^{\star}}{\operatorname{argmin}} D_{\mathrm{KL}}\left(q_{\boldsymbol{\lambda}}(\boldsymbol{z}, \boldsymbol{\phi}) \| p(\boldsymbol{z}, \boldsymbol{\phi} \mid \mathcal{D})\right)$

 jointly does not work!
$\underset{\lambda^{\star}}{\operatorname{argmin}} D_{\mathrm{KL}}\left(q_{\lambda}(\boldsymbol{z}, \boldsymbol{\phi}) \| p(\boldsymbol{z}, \boldsymbol{\phi} \mid \mathcal{D})\right)$ jointly does not work!

Our solution: find smart initialization

Solution: 3-stage Inference Framework

1. Characterize weight space

Train ensemble of neural networks
3. Black-box VI (BBVI)

$$
D_{\mathrm{KL}}\left(q_{\lambda}(\boldsymbol{z}, \boldsymbol{\phi}) \| p(\boldsymbol{z}, \boldsymbol{\phi} \mid \mathcal{D})\right)
$$

Results

Illustrative Toy Example

Functions from Sampled True Weights

Standard BNN

Inference with Bayes By Back Prop (BBB) [Blundell et.al, 2015]

Latent Projection BNN

Results: Uncertainty estimation

LP-BNN

BBB

MVG

MNF

- BBB: Bayes by Back Prop [Blundell et.al, 2015]
- MVG: Multivariate Gaussians [Louizos et.al, 2016]
- MNF: Multiplicative Normalizing Flow [Louizos et. al, 2017]

Results: Generalization

Results: Generalization

Results: Generalization (Ablations)

Results: Generalization

Results: Generalization

Conclusions

In this talk...

- Alternative modeling for BNNs
- Better approximate inference

Future improvements:

- Scalability
- Flexibility of variational distribution in latent space
https://arxiv.org/abs/1811.07006

Medical Applications (ongoing)

- HIV simulator

- Intensive Care Unit
- Depression Data

"Predicting treatment discontinuation after antidepressant initiation"
[Pradier et.al, 2018: submitted to JAMA]

Thank you!

https://melaniefp.github.io/

Prediction-constrained Autoencoder

$$
\begin{gathered}
\left\{\boldsymbol{\theta}^{*}, \phi^{*}\right\}=\underset{\boldsymbol{\theta}, \phi}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\theta}, \phi)=\min _{\theta, \phi}\left\{\frac{1}{R} \sum_{r=1}^{R}\left(\mathbf{w}_{\mathbf{c}}^{(r)}-g_{\phi}\left(f_{\theta}\left(\mathbf{w}_{\mathbf{c}}^{(r)}\right)\right)+\gamma^{(r)}\right)^{2}\right. \\
+\beta \mathbb{E}_{(x, y) \sim \mathcal{D}}\left[\frac{1}{R} \sum_{r=1}^{R} \log p\left(y \mid x, g_{\phi}\left(f_{\theta}\left(\mathbf{w}_{\mathbf{c}}^{(r)}\right)\right)\right]\right\},
\end{gathered}
$$

