Towards better uncertainty in Bayesian Neural Networks

Wednesday 19th, December 2018

Melanie F. Pradier

airplane	1	N.	-	X	*	1	2	-4-		Sel.
automobile	-				-	Ma			1-0	*
bird	S	5	2			4	1	N.	2	4
cat	1	E d		50		10	E.	Å.	N.	1
deer	1	40	X	R	1	Y	Y	1	n.	
dog	1	1	-	٠	1	(A)		R [®]	A	N.
frog		age .	19		2 🐐		1	5		5
horse	- Mar	-	P	2	P	KAN	-3	- the	1	T
ship	-	Ś		-	MA		2	180	1	
truck			1	ŝ.				1		dela

[Ulatus post, 2016]

[Minh et.al, 2015]

[Zhu et.al, 2018]

[He et.al, 2018]

[Silver et.al, 2017]

airplane	1	. Ye	-	X	*	1	2	-7		Sel.
automobile					-	No.			1-0	*
bird	S	ſ	2			4	1	N.	1	4
cat		Ľ,		50		10	E.	1	N.	1
deer	1	40	X	R	1	Y	Y	1	n.	
dog	376	1	-		1	(A)		13	A	N.
frog	-	19	19		7		and the second	ST.		3
horse	- Ada	-	P	2	1	KAB	-	24		1
ship	-			-	MA		2	18	1	
truck		Si a	1					In		dela

[Minh et.al, 2015]

- Highly-predictive
- Scalable

[Zhu et.al, 2018]

[Silver et.al, 2017]

airplane	1	. Ye	-	X	*	1	2	-7		Sel.
automobile					-	No.			1-0	*
bird	S	ſ	2			4	1	N.	1	4
cat		Ľ,		50		10	E.	1	N.	1
deer	1	40	X	R	1	Y	Y	1	n.	
dog	376	1	-		1	(A)		13	A	N.
frog	-	19	19		7		and the second	ST.		3
horse	- Ada	-	P	2	1	KAB	-	24		1
ship	-			-	MA		2	18	1	
truck		Si a	1					In		dela

[Minh et.al, 2015]

- Highly-predictive
- Scalable

[Zhu et.al, 2018]

[He et.al, 2018]

[Silver et.al, 2017]

grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squir <mark>rel monkey</mark>
grille	mushroom	grape	spider monkey
pickup	jelly fungus	elderberry	titi
beach wagon	gill fungus	ffordshire bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

[Zhu et.al, 2018]

(a) Husky classified as wolf

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

	Before	After
Trusted the bad model	10 out of 27	3 out of 27
Snow as a potential feature	12 out of 27	25 out of 27

[Eykholt et.al, 2018]

[Nirschi et.al, 2018]

[Eykholt et.al, 2018]

[Nirschi et.al, 2018]

Our Goal:

 $\mathbf{y} = f_{oldsymbol{w}}(\mathbf{x}) + oldsymbol{\epsilon}$

Quantify Uncertainty

With such uncertainty, we can:

- Alert humans in unclear situations
- Diagnose ML systems (when and how does it fail)
- Get better predictive accuracy

Two sources of uncertainty

[Depeweg et.al, 2017]

Two sources of uncertainty

[Depeweg et.al, 2017]

Overview

Two sources of uncertainty

[Depeweg et.al, 2017]

In this talk...

• Approximate f_{w} with a

Bayesian Neural Network

• Modeling + inference contributions

Gaussian Process (GP)

 $f(x) \sim \mathrm{GP}\left(m(x),k(x,x')
ight)$

Gaussian Process (GP)

Drawbacks of GPs

- Scalability
- Kernel learning is not trivial

Gaussian Process (GP)

Drawbacks of GPs

- Scalability
- Kernel learning is not trivial

Alternative: Neural Networks with uncertainty

- Ensemble of Neural Networks [Lakshminarayanan et al., 2017; Pearce et.al, 2018]
- Bayesian Neural Networks [Buntine et al., 1991; MacKay, 1992; Neal, 1993]

Bayesian Neural Network (BNN)

$$egin{aligned} \mathcal{D} &= \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N \ oldsymbol{w} &\sim \mathcal{N}(0, \sigma_w^2 \mathbf{I}), \quad oldsymbol{\epsilon} &\sim \mathcal{N}(0, \sigma_\epsilon^2 \mathbf{I}) \end{aligned}$$

[What my deep model does not know, post of Yarin Gal, 2015]

Bayesian Neural Network (BNN)

[What my deep model does not know, post of Yarin Gal, 2015]

$$egin{aligned} \mathcal{D} &= \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N \ oldsymbol{w} &\sim \mathcal{N}(0, \sigma_w^2 \mathbf{I}), \quad oldsymbol{\epsilon} &\sim \mathcal{N}(0, \sigma_\epsilon^2 \mathbf{I}) \end{aligned}$$

Quantities of interest:

• Posterior of the weights

$$p(oldsymbol{w}|\mathcal{D})$$

• Predictive distribution

 $p(\mathbf{y}^{\star}|\mathbf{x}^{\star},\mathcal{D}) = \int p(\mathbf{y}^{\star}|\mathbf{x}^{\star},oldsymbol{w}) p(oldsymbol{w}|\mathcal{D}) doldsymbol{w}$

 $p(\boldsymbol{w}|\mathcal{D})$

is intractable!

 $p(\boldsymbol{w}|\mathcal{D})$

is intractable!

Inference options:

- Markov Chain Monte Carlo Hamiltonian Monte Carlo [Neal, 1993]
- Variational Inference [Graves, 1993] [Blundell et.al, 2015]

[Blundell et.al, 2015]

 $+ p(\boldsymbol{w}|\mathcal{D})$

Objective: approximate $\ p(oldsymbol{w} | \mathcal{D})$

 $egin{aligned} q_{oldsymbol{\lambda}}(oldsymbol{w}) \in \mathcal{Q} \ rgmin_{oldsymbol{\lambda}^{\star}} D_{ ext{KL}}ig(q_{oldsymbol{\lambda}}(oldsymbol{w})||p(oldsymbol{w}|\mathcal{D})ig) \end{aligned}$

[Blundell et.al, 2015]

 $+ p(\boldsymbol{w}|\mathcal{D})$

Objective: approximate $p(oldsymbol{w}|\mathcal{D})$

 $q_{oldsymbol{\lambda}}(oldsymbol{w})\in\mathcal{Q}$

 $\operatorname*{argmin}_{oldsymbol{\lambda}^{\star}} D_{\mathrm{KL}} \Big(q_{oldsymbol{\lambda}}(oldsymbol{w}) || p(oldsymbol{w} | \mathcal{D}) \Big)$

 $q_{\boldsymbol{\lambda}_0}(\boldsymbol{w})$

$$rgmax_{oldsymbol{\lambda}^\star} \mathcal{L}(oldsymbol{\lambda}) = \mathbb{E}_q \Big[\log pig(oldsymbol{y} | oldsymbol{x}, oldsymbol{w} ig) \Big] - D_{ ext{KL}}ig(q_{oldsymbol{\lambda}}(oldsymbol{w}) || p(oldsymbol{w}) ig)$$

[Blundell et.al, 2015]

Black-box VI [Ranganath et.al, 2013] + reparametrization trick [Kingma et.al, 2014; Rezende et.al, 2015]

[Blundell et.al, 2015]

Black-box VI [Ranganath et.al, 2013] + reparametrization trick [Kingma et.al, 2014; Rezende et.al, 2015]

Is mean-field VI good enough?

Is mean-field VI good enough?

Example on solar irradiance dataset [Gal et.al, 2015]

Is mean-field VI good enough?

- **Better priors**, e.g., multivariate Gaussians [Louizos et al, 2016]
- More **flexible variational** approx. in weight Space [Louizos et.al, 2017]

Example on solar irradiance dataset [Gal et.al, 2015]

0.0

0.5

1.0

1.5

-1.5

-1.0

-0.5

Standard BNN Modeling

$$egin{aligned} oldsymbol{y} &= f_{oldsymbol{w}}(oldsymbol{x}) + oldsymbol{\epsilon}, \ oldsymbol{w} &\sim \mathcal{N}(0, \sigma_w^2 \mathbf{I}), \ oldsymbol{\epsilon} &\sim \mathcal{N}(0, \sigma_\epsilon^2 \mathbf{I}) \end{aligned}$$

Weight redundancy [Denil et.al, 2013]

Latent-Projection BNN Modeling

$$oldsymbol{y} = f_{oldsymbol{w}}(oldsymbol{x}) + oldsymbol{\epsilon}, \,\,\,oldsymbol{w} = g_{oldsymbol{\phi}}(oldsymbol{z}), \,\,\,\,oldsymbol{z} \sim p(oldsymbol{z}), \,\,\,\,oldsymbol{\phi} \sim p(oldsymbol{\phi}), \ oldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma_{oldsymbol{\epsilon}}^2 \mathbf{I})$$

 $g_{oldsymbol{\phi}}$

 $D_w \gg D_z$

Weight redundancy [Denil et.al, 2013]

w-space

z-space

How about inference?

Objective: approximate $\ p(oldsymbol{w} | \mathcal{D})$

 $egin{aligned} q_{oldsymbol{\lambda}}(oldsymbol{w}) \in \mathcal{Q} \ rgmin_{oldsymbol{\lambda}^{\star}} D_{ ext{KL}}ig(q_{oldsymbol{\lambda}}(oldsymbol{w})||p(oldsymbol{w}|\mathcal{D})ig) \end{aligned}$

+ $p(\boldsymbol{w}|\mathcal{D})$

$$rgmax_{oldsymbol{\lambda}^\star} \mathcal{L}(oldsymbol{\lambda}) = \mathbb{E}_q \Big[\log pig(oldsymbol{y} | oldsymbol{x}, oldsymbol{w} ig) \Big] - D_{ ext{KL}}ig(q_{oldsymbol{\lambda}}(oldsymbol{w}) || p(oldsymbol{w}) ig)$$

How about inference?

Black-box VI [Ranganath et.al, 2013] + reparametrization trick [Kingma et.al, 2014; Rezende et.al, 2015]

How about inference?

Black-box VI [Ranganath et.al, 2013] + reparametrization trick [Kingma et.al, 2014; Rezende et.al, 2015]

 $\operatorname{argmin}_{\mathrm{KL}} \left(q_{\boldsymbol{\lambda}}(\boldsymbol{z}, \boldsymbol{\phi}) || p(\boldsymbol{z}, \boldsymbol{\phi} | \mathcal{D}) \right)$ *****

jointly does not work!

 $\operatorname*{argmin}_{oldsymbol{\lambda}^{\star}} D_{\mathrm{KL}} \Big(q_{oldsymbol{\lambda}}(oldsymbol{z},oldsymbol{\phi}) || p(oldsymbol{z},oldsymbol{\phi} | \mathcal{D}) \Big)$

jointly does not work!

Our solution: find smart initialization

Solution: 3-stage Inference Framework

Results

Illustrative Toy Example

Standard BNN

Inference with Bayes By Back Prop (BBB) [Blundell et.al, 2015]

Latent Projection BNN

Results: Uncertainty estimation

BBB

LP-BNN

- BBB: Bayes by Back Prop [Blundell et.al, 2015]
- MVG: Multivariate Gaussians [Louizos et.al, 2016]
- MNF: Multiplicative Normalizing Flow [Louizos et. al, 2017]

Results: Generalization

Results: Generalization

Results: Generalization (Ablations)

1-stage	\bigotimes	\bigotimes	\bigcirc
linear	$\overline{\checkmark}$	linear	$\overline{\mathbf{O}}$
q(z) only	Š	\bigotimes	$q_{oldsymbol{\lambda}_z}(oldsymbol{z})$

Results: Generalization

Results: Generalization

Conclusions

z-space

https://arxiv.org/abs/1811.07006

In this talk...

- Alternative modeling for BNNs
- Better approximate inference

Future improvements:

- **Scalability**
- Flexibility of variational distribution in latent space

Medical Applications (ongoing)

- HIV simulator
- Intensive Care Unit
- Depression Data

"Predicting treatment discontinuation after antidepressant initiation"

[Pradier et.al, 2018: submitted to JAMA]

Thank you!

Weiwei Pan

Jiayu Yao

Soumya Ghosh

Finale Doshi-Velez

at Harvard John A. Paulson School of Engineering and Applied Sciences

https://melaniefp.github.io/

Prediction-constrained Autoencoder

$$\{\boldsymbol{\theta}^{\star}, \boldsymbol{\phi}^{\star}\} = \underset{\boldsymbol{\theta}, \boldsymbol{\phi}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \underset{\boldsymbol{\theta}, \boldsymbol{\phi}}{\operatorname{min}} \left\{ \frac{1}{R} \sum_{r=1}^{R} \left(\mathbf{w}_{\mathbf{c}}^{(r)} - g_{\boldsymbol{\phi}} \left(f_{\boldsymbol{\theta}} \left(\mathbf{w}_{\mathbf{c}}^{(r)} \right) \right) + \gamma^{(r)} \right)^{2} \right. \\ \left. + \beta \mathbb{E}_{(x, y) \sim \mathcal{D}} \left[\frac{1}{R} \sum_{r=1}^{R} \log p(y | x, g_{\boldsymbol{\phi}} \left(f_{\boldsymbol{\theta}} \left(\mathbf{w}_{\mathbf{c}}^{(r)} \right) \right) \right] \right\},$$