Sparse Three-parameter Restricted IBP for Understanding International Trade

Melanie F. Pradier, Viktor Stojkoski, Zoran Utkovski, Ljupco Kocarev, and Fernando Perez-Cruz

December 9, 2016

Sparse Three-parameter Restricted IBP for Understanding International Trade

Melanie F. Pradier, Viktor Stojkoski, Zoran Utkovski, Ljupco Kocarev, and Fernando Perez-Cruz

December 9, 2016

• High-dimensional count data.

・ロト ・合ト ・モト ・ 王

Sparse Three-parameter Restricted IBP for Understanding International Trade

Melanie F. Pradier, Viktor Stojkoski, Zoran Utkovski, Ljupco Kocarev, and Fernando Perez-Cruz

December 9, 2016

- High-dimensional count data.
- Focus on Data Exploration.

Motivation: Wealth of Nations

Theoretical Background Our Approach Results

Motivation: Wealth of Nations

The reality:

Theoretical Background Our Approach Results

Motivation: Wealth of Nations

The reality:

Properties:

Theoretical Background Our Approach Results

Motivation: Wealth of Nations

The reality:

Properties:

Theoretical Background Our Approach Results

Motivation: Wealth of Nations

The reality:

Properties:

- Triangularity
- $\bigcirc D \gg N$

Theoretical Background Our Approach Results

Motivation: Wealth of Nations

The reality:

Properties:

- Triangularity
- $D \gg N$

Our Contribution

Develop an Infinite Poisson-Gamma Model

- Flexible prior
- Feature sparsity

Indian Buffet Process (Ghahramani et.al, 2006)

$$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ \phi & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array} \begin{array}{c} I & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{array} \end{array} \right)$$

Indian Buffet Process (Ghahramani et.al, 2006)

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ \phi \end{array} \quad \begin{array}{c} & \\ & Z \sim \text{IBP}(\alpha) \end{array} \quad Z = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

De Finetti's Representation: (Thibaux et.al, 2007)

$$\mathbf{Z}_{n} \sim \operatorname{BeP}(\mu) \qquad (1)$$
$$\mu \sim \operatorname{BP}(1, \alpha, H) \qquad (2)$$

where $\mu = \sum_k \pi_k \delta_{\theta_k}$

Indian Buffet Process (Ghahramani et.al, 2006)

$$\begin{array}{c} & & \\ & & \\ & & \\ \phi & & \\ \phi & & \\ & & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \end{array} \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \end{array}$$

De Finetti's Representation: (Thibaux et.al, 2007)

$$\mathbf{Z}_{n \cdot} \sim \operatorname{BeP}(\mu) \qquad (1)$$
$$\mu \sim \operatorname{BP}(1, \alpha, H) \qquad (2)$$

where $\mu = \sum_k \pi_k \delta_{\theta_k}$

• **Disadvantage**: Mass parameter α couples both J_n and K^+

Indian Buffet Process (Ghahramani et.al, 2006)

$$\begin{array}{c} & & \\ & & \\ & & \\ \phi & & \\ \phi & & \\ & & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \end{array} \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \end{array}$$

De Finetti's Representation: (Thibaux et.al, 2007)

$$\mathbf{Z}_{n \cdot} \sim \operatorname{BeP}(\mu) \qquad (1)$$
$$\mu \sim \operatorname{BP}(1, \alpha, H) \qquad (2)$$

where $\mu = \sum_k \pi_k \delta_{\theta_k}$

• **Disadvantage**: Mass parameter α couples both J_n and K^+

Beyond the standard IBP

Three-parameter IBP (Teh et.al, 2007)

• More flexible distribution for stick weights

$$\mathbf{Z}_{n} \sim \operatorname{BeP}(\mu) \tag{5}$$
$$\mu \sim \operatorname{SBP}(1, \alpha, H, c, \sigma) \tag{6}$$

$$p(J_{new}) \sim \text{Poisson}\left(\alpha \frac{\Gamma(1+\mathbf{c})\Gamma(n+\mathbf{c}+\sigma-1)}{\Gamma(n+\mathbf{c})\Gamma(\mathbf{c}+\sigma)}\right)$$

∃ > -

Beyond the standard IBP

Three-parameter IBP (Teh et.al, 2007)

• More flexible distribution for stick weights

$$\mathbf{Z}_{n.} \sim \operatorname{BeP}(\mu) \tag{5}$$

$$\mu \sim \operatorname{SBP}(1, \alpha, H, c, \sigma) \tag{6}$$

$$p(J_{new}) \sim \text{Poisson}\left(\alpha \frac{\Gamma(1+\mathbf{c})\Gamma(n+\mathbf{c}+\boldsymbol{\sigma}-1)}{\Gamma(n+\mathbf{c})\Gamma(\mathbf{c}+\boldsymbol{\sigma})} \right)$$

Beyond the standard IBP

Three-parameter IBP (Teh et.al, 2007)

• More flexible distribution for stick weights

$$\mathbf{Z}_{n\cdot} \sim \operatorname{BeP}(\mu) \tag{5}$$
$$\mu \sim \operatorname{SBP}(1, \alpha, H, c, \sigma) \tag{6}$$

$$p\left(J_{new}\right) ~\sim~ \mathrm{Poisson}\left(\frac{ \Gamma(1+\mathbf{c}) \Gamma(n+\mathbf{c}+\boldsymbol{\sigma}-1)}{ \Gamma(n+\mathbf{c}) \Gamma(\mathbf{c}+\boldsymbol{\sigma})} \right)$$

Restricted IBP (Doshi-Velez et.al, 2015)

• Arbitrary prior f over J_n

$$\mathbf{Z}_{n} \sim \mathbf{R} - \mathbf{BeP}(\mu, f)$$
 (7)

$$\mu \sim BP(1, \alpha, H)$$
 (8)

Beyond the standard IBP

Three-parameter IBP (Teh et.al, 2007)

• More flexible distribution for stick weights

$$\mathbf{Z}_{n\cdot} \sim \operatorname{BeP}(\mu) \tag{5}$$
$$\mu \sim \operatorname{SBP}(1, \alpha, H, \boldsymbol{c}, \boldsymbol{\sigma}) \tag{6}$$

$$p\left(J_{new}\right) ~\sim~ \mathrm{Poisson}\left(\boldsymbol{\alpha} \frac{\Gamma(1+\mathbf{c})\Gamma(n+\mathbf{c}+\boldsymbol{\sigma}-1)}{\Gamma(n+\mathbf{c})\Gamma(\mathbf{c}+\boldsymbol{\sigma})} \right)$$

Restricted IBP (Doshi-Velez et.al, 2015)

• Arbitrary prior f over J_n

$$\mathbf{Z}_{n} \sim \mathbf{R} - \mathbf{BeP}(\mu, f)$$
 (7)

$$\mu \sim BP(1, \alpha, H)$$
 (8)

- Combination of both
- Flexible prior

Our Approach Sparse Three-Parameter Restricted Indian Buffet Process

Our Approach Sparse Three-Parameter Restricted Indian Buffet Process

9	Let Σ	$\mathbf{X} \in \mathbf{I}$	$\mathbb{N}^{N \times D}$	
	x_{nd}	\sim	$\operatorname{Poisson}(\mathbf{Z}_{n},\mathbf{B}_{\cdot d})$	(9)
	B_{kd}	\sim	$\operatorname{Gamma}\left(\alpha_B, \frac{\mu_B}{\alpha_B}\right)$	(10)
	$\mathbf{Z}_{n\cdot}$	\sim	$BeP(\mu)$	(11)
	μ	\sim	$\mathrm{BP}(1,\alpha,H)$	(12)

Our Approach Sparse Three-Parameter Restricted Indian Buffet Process

• Let
$$\mathbf{X} \in \mathbb{N}^{N \times D}$$

 $x_{nd} \sim \text{Poisson}(\mathbf{Z}_n \cdot \mathbf{B}_{\cdot d})$ (9)
 $B_{kd} \sim \text{Gamma}(\alpha_B, \frac{\mu_B}{\alpha_B})$ (10)
 $\mathbf{Z}_n \cdot \sim \text{BeP}(\mu)$ (11)
 $\mu \sim \text{SBP}(1, \alpha, H, c, \sigma)$ (12)

Our Approach Sparse Three-Parameter Restricted Indian Buffet Process

Generative Model

• Let $\mathbf{X} \in \mathbb{N}^{N \times D}$ $x_{nd} \sim \text{Poisson}(\mathbf{Z}_{n}.\mathbf{B}_{.d})$ (9) $B_{kd} \sim \text{Gamma}(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}})$ (10) $\mathbf{Z}_{n.} \sim \text{R-BeP}(\mu, f)$ (11) $\mu \sim \text{SBP}(1, \alpha, H, \boldsymbol{c}, \boldsymbol{\sigma})$ (12)

Our Approach Sparse Three-Parameter Restricted Indian Buffet Process

Generative Model

• Let $\mathbf{X} \in \mathbb{N}^{N \times D}$ $x_{nd} \sim \text{Poisson}(\mathbf{Z}_{n}.\mathbf{B}_{.d})$ (9) $B_{kd} \sim \text{Gamma}(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}})$ (10) $\mathbf{Z}_{n.} \sim \text{R-BeP}(\mu, f)$ (11) $\mu \sim \text{SBP}(1, \alpha, H, c, \sigma)$ (12)

Our Approach Sparse Three-Parameter Restricted Indian Buffet Process

Generative Model

- Let $\mathbf{X} \in \mathbb{N}^{N \times D}$ $x_{nd} \sim \text{Poisson}(\mathbf{Z}_{n} \cdot \mathbf{B}_{\cdot d})$ (9) $B_{kd} \sim \text{Gamma}(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}})$ (10) $\mathbf{Z}_{n} \sim \text{R-BeP}(\mu, f)$ (11) $\mu \sim \text{SBP}(1, \alpha, H, c, \sigma)$ (12)
- **2** R-IBP \rightarrow countries inequalities
- - \rightarrow interpretability

Results Capturing Input Sparsity Structure

Results Interpretability

Id	$\bar{m_k}$	Top-5 products with sorted highest weights (B_{kd})	
F1	18.27	Miscellaneous Animal Oils (0.78), Bovine and Equine Entrails (0.72), Bovine meat (0.68), Preserved Milk (0.63), Equine (0.62)	
F3	14.87	Parts of Metalworking Machine Tools (0.74), Interchangeable Tool Parts (0.72), Polishing Stones (0.69), Tool Holders (0.66), Miscellaneous Metalworking Machine-Tools (0.54)	
F5	11.04	Synthetic Rubber (0.87), Acrylic Polymers (0.85), Silicones (0.76), Miscellaneous Polymerization Products (0.71), Tinned Sheets (0.65)	
F7	31.14	Vehicles Parts and Accessories (0.59) , Cars (0.58) , Iron Wire (0.53) , Trucks and Vans (0.53) , Air Pumps and Compressors (0.50)	

(日) (종) (종) (종)

æ

Results Interpretability

Top Products (decay 30%)	B_{kd}
Bovine	0.49
Miscellaneous Refrigeration Equipment	0.43
Radioactive Chemicals	0.41
Blocks of Iron and Steel	0.41
Rape Seeds	0.40
Animal meat, misc	0.39
Refined Sugars	0.38
Miscellaneous Tire Parts	0.38
Leather Accessories	0.38
Liquor	0.38
Bovine meat	0.38
Embroidery	0.37
Unmilled Barley	0.37
Dried Vegetables	0.36
Textile Fabrics Clothing Accessories	0.36
Horse Meat	0.35
Iron Bars and Rods	0.35
Analog Navigation Devices	0.35

Top Products (decay 30%)	B_k
Miscellaneous Animal Oils	0.7
Bovine and Equine Entrails	0.7
Bovine meat	0.6
Preserved Milk	0.6
Equine	0.6
Butter	0.53
Misc. Animal Origin Materials	0.5'
Glues	0.5

(日) (종) (종) (종)

(b) S3R-IBP

æ

(a) SVD

э

-

(日) (同) (三) (

Results Interpretability

Countries in Capability Space

Results Interpretability

Countries in Capability Space

- France = Belgium + ?
- Germany ? = Austria
- Malaysia (Electronics) $+ ? \rightarrow$ Phillipines
- $\bullet~$ Phillipines + ? \rightarrow Indonesia, Vietnam

Results Interpretability

Countries in Capability Space

- France = Belgium + Industrial Machinery
- Germany Chemical = Austria
- Malaysia (Electronics) + Clothing \rightarrow Phillipines
- $\bullet~$ Phillipines + Basic Processing \rightarrow Indonesia, Vietnam

Conclusion

- **1** BNP model for data exploration in high-dim count data.
- **2** interpretable and structured solutions.
- **3** Analysis of productive structure of world economies.

Conclusion

- **1** BNP model for data exploration in high-dim count data.
- **2** interpretable and structured solutions.
- **3** Analysis of productive structure of world economies.

Future works

• **Time-dependent extension** with Markovian activation of features and smooth variation of capabilities.

Conclusion

- BNP model for data exploration in high-dim count data.
- **2** interpretable and structured solutions.
- **3** Analysis of productive structure of world economies.

Future works

• **Time-dependent extension** with Markovian activation of features and smooth variation of capabilities.

Thank you for listening! Any question?

