Sparse Three－parameter Restricted IBP for Understanding International Trade

Melanie F．Pradier，Viktor Stojkoski，Zoran Utkovski， Ljupco Kocarev，and Fernando Perez－Cruz

December 9， 2016

Sparse Three-parameter Restricted IBP for Understanding International Trade

Melanie F. Pradier, Viktor Stojkoski, Zoran Utkovski, Ljupco Kocarev, and Fernando Perez-Cruz

December 9, 2016

- High-dimensional count data.

Sparse Three-parameter Restricted IBP for Understanding International Trade

Melanie F. Pradier, Viktor Stojkoski, Zoran Utkovski,
Ljupco Kocarev, and Fernando Perez-Cruz

December 9, 2016

- High-dimensional count data.
- Focus on Data Exploration.

Motivation: Wealth of Nations

What makes some countries wealthier than others?

Motivation: Wealth of Nations

What makes some countries wealthier than others?

Motivation: Wealth of Nations

What makes some countries wealthier than others?

Motivation: Wealth of Nations

What makes some countries wealthier than others?

Motivation: Wealth of Nations

What makes some countries wealthier than others?

\rightarrow block-structure

Motivation: Wealth of Nations

The reality:

Motivation: Wealth of Nations

The reality:

Properties:

Motivation: Wealth of Nations
Theoretical Background
Our Approach
Results

Motivation: Wealth of Nations

The reality:

Properties:

(1) Triangularity

Motivation: Wealth of Nations
Theoretical Background
Our Approach
Results

Motivation: Wealth of Nations

The reality:

Properties:

(1) Triangularity
(c) $D \gg N$

Motivation: Wealth of Nations

The reality:

Properties:
(1) Triangularity
(2) $D \gg N$

Our Contribution

Develop an Infinite
Poisson-Gamma Model

- Flexible prior
- Feature sparsity

Indian Buffet Process (Ghahramani et.al, 2006)

Indian Buffet Process (Ghahramani et.al, 2006)

$$
\underset{Z \sim \operatorname{IBP}(\alpha)}{ } Z=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

De Finetti's Representation:
(Thibaux et.al, 2007)

$$
\begin{align*}
\mathbf{Z}_{n .} & \sim \operatorname{BeP}(\mu) \tag{1}\\
\mu & \sim \operatorname{BP}(1, \alpha, H) \tag{2}
\end{align*}
$$

where $\mu=\sum_{k} \pi_{k} \delta_{\theta_{k}}$

Indian Buffet Process (Ghahramani et.al, 2006)

- Disadvantage: Mass parameter

$$
\underset{Z \sim \operatorname{IBP}(\alpha)}{ } Z=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

De Finetti's Representation: (Thibaux et.al, 2007)

$$
\begin{align*}
\mathbf{Z}_{n} & \sim \operatorname{BeP}(\mu) \tag{1}\\
\mu & \sim \operatorname{BP}(1, \alpha, H) \tag{2}
\end{align*}
$$

where $\mu=\sum_{k} \pi_{k} \delta_{\theta_{k}}$

$$
\begin{equation*}
J_{n} \sim \operatorname{Poisson}(\alpha) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
K^{+} \sim \operatorname{Poisson}\left(\alpha \sum_{n=1}^{N}\left(\frac{1}{n}\right)\right) \tag{4}
\end{equation*}
$$

Indian Buffet Process (Ghahramani et.al, 2006)

- Disadvantage: Mass parameter

$$
\underset{Z \sim \operatorname{IBP}(\alpha)}{ } Z=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

De Finetti's Representation: (Thibaux et.al, 2007)

$$
\begin{align*}
\mathbf{Z}_{n} & \sim \operatorname{BeP}(\mu) \tag{1}\\
\mu & \sim \operatorname{BP}(1, \alpha, H) \tag{2}
\end{align*}
$$

where $\mu=\sum_{k} \pi_{k} \delta_{\theta_{k}}$

$$
\begin{equation*}
J_{n} \sim \operatorname{Poisson}(\alpha) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
K^{+} \sim \operatorname{Poisson}\left(\alpha \sum_{n=1}^{N}\left(\frac{1}{n}\right)\right) \tag{4}
\end{equation*}
$$

Beyond the standard IBP

Three-parameter IBP

(Teh et.al, 2007)

- More flexible distribution for stick weights

$$
\begin{align*}
\mathbf{Z}_{n} & \sim \operatorname{BeP}(\mu) \tag{5}\\
\mu & \sim \operatorname{SBP}(1, \alpha, H, c, \sigma) \tag{6}
\end{align*}
$$

$p\left(J_{\text {new }}\right) \sim$ Poisson $\left(\alpha \frac{\Gamma(1+\mathrm{c}) \Gamma(n+\mathrm{c}+\sigma-1)}{\Gamma(n+\mathrm{c}) \Gamma(\mathrm{c}+\sigma)}\right)$

Beyond the standard IBP

Three-parameter IBP

(Teh et.al, 2007)

- More flexible distribution for stick weights

$$
\begin{align*}
\mathbf{Z}_{n} & \sim \operatorname{BeP}(\mu) \tag{5}\\
\mu & \sim \operatorname{SBP}(1, \alpha, H, c, \sigma) \tag{6}
\end{align*}
$$

$p\left(J_{\text {new }}\right) \sim$ Poisson $\left(\alpha \frac{\Gamma(1+\mathrm{c}) \Gamma(n+\mathrm{c}+\sigma-1)}{\Gamma(n+\mathrm{c}) \Gamma(\mathrm{c}+\sigma)}\right)$

Beyond the standard IBP

Three-parameter IBP

(Teh et.al, 2007)

- More flexible distribution for stick weights

$$
\begin{align*}
\mathbf{Z}_{n} & \sim \operatorname{BeP}(\mu) \tag{5}\\
\mu & \sim \operatorname{SBP}(1, \alpha, H, c, \sigma) \tag{6}
\end{align*}
$$

$p\left(J_{\text {new }}\right) \sim \operatorname{Poisson}\left(\alpha \frac{\Gamma(1+\mathrm{c}) \Gamma(n+\mathrm{c}+\sigma-1)}{\Gamma(n+\mathrm{c}) \Gamma(\mathrm{c}+\sigma)}\right)$

Restricted IBP

(Doshi-Velez et.al, 2015)

- Arbitrary prior f over J_{n}

$$
\begin{align*}
\mathbf{Z}_{n} & \sim \operatorname{R-BeP}(\mu, f) \tag{7}\\
\mu & \sim \operatorname{BP}(1, \alpha, H) \tag{8}
\end{align*}
$$

Beyond the standard IBP

Three-parameter IBP

(Teh et.al, 2007)

- More flexible distribution for stick weights

$$
\begin{align*}
\mathbf{Z}_{n} & \sim \operatorname{BeP}(\mu) \tag{5}\\
\mu & \sim \operatorname{SBP}(1, \alpha, H, c, \sigma) \tag{6}
\end{align*}
$$

$p\left(J_{\text {new }}\right) \sim \operatorname{Poisson}\left(\alpha \frac{\Gamma(1+\mathrm{c}) \Gamma(n+\mathrm{c}+\sigma-1)}{\Gamma(n+\mathrm{c}) \Gamma(\mathrm{c}+\sigma)}\right)$

Restricted IBP

(Doshi-Velez et.al, 2015)

- Arbitrary prior f over J_{n}

$$
\begin{align*}
\mathbf{Z}_{n} & \sim \operatorname{R-BeP}(\mu, f) \tag{7}\\
\mu & \sim \operatorname{BP}(1, \alpha, H) \tag{8}
\end{align*}
$$

- Combination of both
- Flexible prior

Our Approach

Sparse Three-Parameter Restricted Indian Buffet Process

Our Approach

Sparse Three-Parameter Restricted Indian Buffet Process

Generative Model

- Let $\mathbf{X} \in \mathbb{N}^{N \times D}$

$$
\begin{align*}
x_{n d} & \sim \operatorname{Poisson}\left(\mathbf{Z}_{n} \cdot \mathbf{B} \cdot d\right) \tag{9}\\
B_{k d} & \sim \operatorname{Gamma}\left(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}}\right)(10) \\
\mathbf{Z}_{n \cdot} & \sim \operatorname{BeP}(\mu) \\
\mu & \sim \operatorname{BP}(1, \alpha, H) \tag{12}
\end{align*}
$$

Our Approach

Sparse Three-Parameter Restricted Indian Buffet Process

Generative Model

- Let $\mathbf{X} \in \mathbb{N}^{N \times D}$

$$
\begin{align*}
x_{n d} & \sim \operatorname{Poisson}\left(\mathbf{Z}_{n} \cdot \mathbf{B} \cdot d\right) \tag{9}\\
B_{k d} & \sim \operatorname{Gamma}\left(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}}\right)(10) \\
\mathbf{Z}_{n \cdot} & \sim \operatorname{BeP}(\mu) \\
\mu & \sim \operatorname{SBP}(11, \alpha, H, c, \sigma)(12)
\end{align*}
$$

Our Approach

Sparse Three-Parameter Restricted Indian Buffet Process

Generative Model

- Let $\mathbf{X} \in \mathbb{N}^{N \times D}$

$$
\begin{align*}
x_{n d} & \sim \operatorname{Poisson}\left(\mathbf{Z}_{n} \cdot \mathbf{B} \cdot d\right) \tag{9}\\
B_{k d} & \sim \operatorname{Gamma}\left(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}}\right)(10) \\
\mathbf{Z}_{n \cdot} & \sim \operatorname{R-BeP}(\mu, f) \\
\mu & \sim \operatorname{SBP}(11, \alpha, H, c, \sigma)(12)
\end{align*}
$$

Our Approach

Sparse Three-Parameter Restricted Indian Buffet Process

Generative Model

- Let $\mathbf{X} \in \mathbb{N}^{N \times D}$

$$
\begin{align*}
x_{n d} & \sim \operatorname{Poisson}\left(\mathbf{Z}_{n} \cdot \mathbf{B} \cdot d\right) \tag{9}\\
B_{k d} & \sim \operatorname{Gamma}\left(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}}\right)(10) \\
\mathbf{Z}_{n \cdot} & \sim \operatorname{R-BeP}(\mu, f) \\
\mu & \sim \operatorname{SBP}(11, \alpha, H, c, \sigma)(12)
\end{align*}
$$

Our Approach

Sparse Three-Parameter Restricted Indian Buffet Process

Generative Model

- Let $\mathbf{X} \in \mathbb{N}^{N \times D}$

$$
\begin{align*}
x_{n d} & \sim \operatorname{Poisson}\left(\mathbf{Z}_{n} \cdot \mathbf{B} \cdot d\right) \tag{9}\\
B_{k d} & \sim \operatorname{Gamma}\left(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}}\right)(10) \\
\mathbf{Z}_{n \cdot} & \sim \operatorname{R-BeP}(\mu, f) \\
\mu & \sim \operatorname{SBP}(1, \alpha, H, c, \sigma)(12)
\end{align*}
$$

(1) 3P-IBP \rightarrow high-tech features
(2) R-IBP \rightarrow countries inequalities
(3) Sparse features $\left(\alpha_{B}<1\right)$
\rightarrow interpretability

Motivation: Wealth of Nations
Theoretical Background Our Approach

Results

Results

Capturing Input Sparsity Structure

(a) S-IBP

(b) Our model S3R-IBP

Results

Interpretability

Id	\bar{m}_{k}	Top-5 products with sorted highest weights ($B_{k d}$)
F1	18.27	Miscellaneous Animal Oils (0.78), Bovine and Equine Entrails (0.72), Bovine meat (0.68), Preserved Milk (0.63), Equine (0.62)
F3	14.87	Parts of Metalworking Machine Tools (0.74), Interchangeable Tool Parts (0.72), Polishing Stones (0.69), Tool Holders (0.66), Miscellaneous Metalworking Machine-Tools (0.54)
F5	11.04	Synthetic Rubber (0.87), Acrylic Polymers (0.85), Silicones (0.76), Miscellaneous Polymerization Products (0.71), Tinned Sheets (0.65) Vehicles Parts and Accessories (0.59), Cars (0.58), Iron Wire (0.53), F7 31.14
\ldots	\ldots	Trucks and Vans (0.53), Air Pumps and Compressors (0.50)
\ldots		

Results
 Interpretability

Top Products (decay 30\%)	$B_{k d}$
Bovine	0.49
Miscellaneous Refrigeration Equipment	0.43
Radioactive Chemicals	0.41
Blocks of Iron and Steel	0.41
Rape Seeds	0.40
Animal meat, misc	0.39
Refined Sugars	0.38
Miscellaneous Tire Parts	0.38
Leather Accessories	0.38
Liquor	0.38
Bovine meat	0.38
Embroidery	0.37
Unmilled Barley	0.37
Dried Vegetables	0.36
Textile Fabrics Clothing Accessories	0.36
Horse Meat	0.35
Iron Bars and Rods	0.35
Analog Navigation Devices	0.35

Top Products (decay 30\%)	$B_{k d}$
Miscellaneous Animal Oils	0.78
Bovine and Equine Entrails	0.72
Bovine meat	0.68
Preserved Milk	0.63
Equine	0.62
Butter	0.58
Misc. Animal Origin Materials	0.57
Glues	0.56

(b) S3R-IBP
(a) SVD

Motivation：Wealth of Nations
Theoretical Background
Our Approach
Results

Results

Interpretability

Countries in Capability Space

Results

Interpretability

Countries in Capability Space

- France $=$ Belgium + ?
- Germany - ? = Austria
- Malaysia (Electronics) + ? \rightarrow Phillipines
- Phillipines + ? \rightarrow Indonesia, Vietnam

Results

Interpretability

Countries in Capability Space

- France $=$ Belgium + Industrial Machinery
- Germany - Chemical = Austria
- Malaysia (Electronics) + Clothing \rightarrow Phillipines
- Phillipines + Basic Processing \rightarrow Indonesia, Vietnam

Conclusion

(1) BNP model for data exploration in high-dim count data.
(2) interpretable and structured solutions.
(3) Analysis of productive structure of world economies.

Conclusion

(1) BNP model for data exploration in high-dim count data.
(2) interpretable and structured solutions.
(3) Analysis of productive structure of world economies.

Future works

- Time-dependent extension with Markovian activation of features and smooth variation of capabilities.

Conclusion

(1) BNP model for data exploration in high-dim count data.
(2) interpretable and structured solutions.
(3) Analysis of productive structure of world economies.

Future works

- Time-dependent extension with Markovian activation of features and smooth variation of capabilities.

Thank you for listening! Any question?

