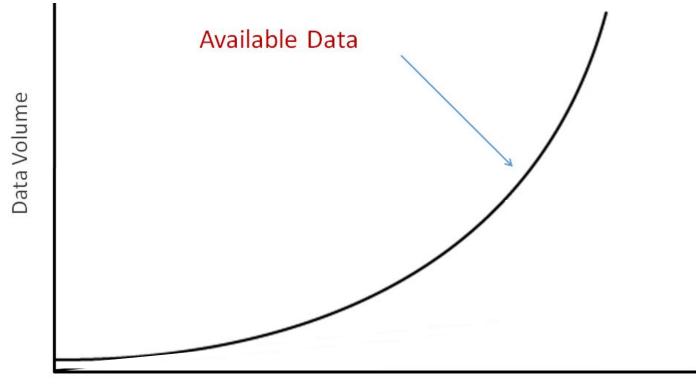
Applications of latent variable models for data exploration and uncertainty quantification

June 21st, 2019

Melanie F. Pradier

at Harvard John A. Paulson School of Engineering and Applied Sciences

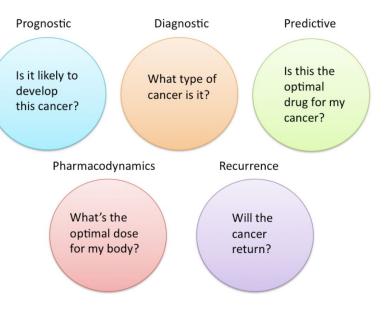
Data everywhere!

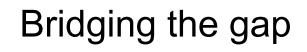


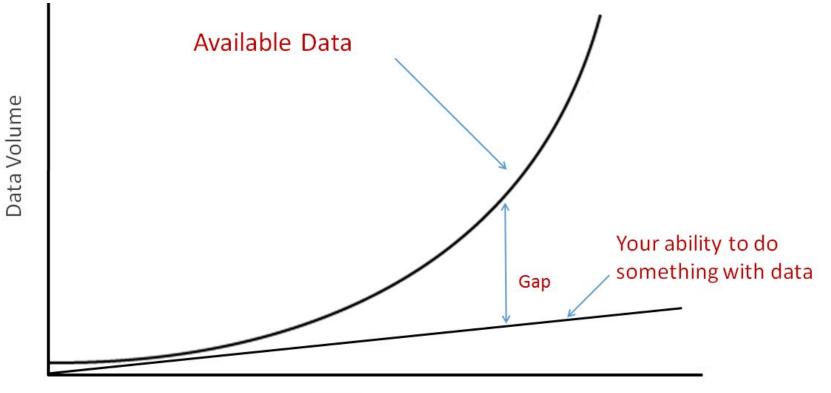
...but still many challenges

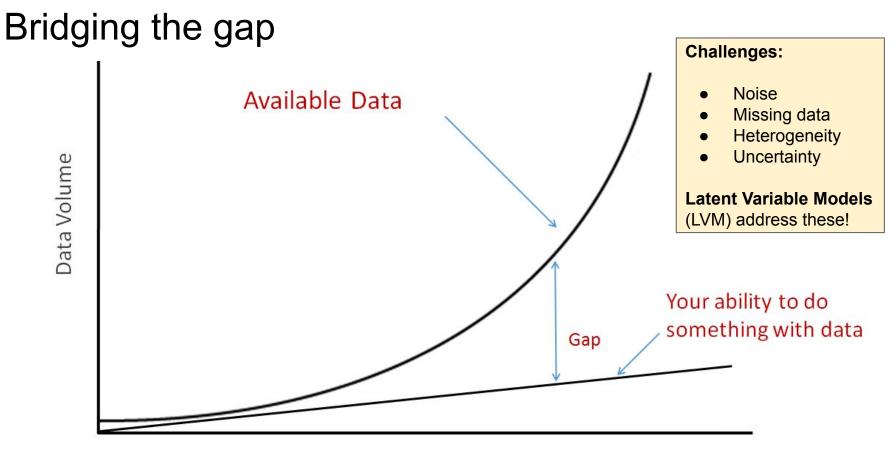
ANTI-DEPRESSANTS	38%	Ť	Ť	Ŷ	Ť	Ť	Ť	Ť	Ť	Ť	Ť
ASTHMA DRUGS	40%	ŕ	Ť	Ť	Ť	İ	Ť	t	Ť	Ť	Ť
DIABETES DRUGS	43%	Ť	Ť	Ť	Ť	Ŷ	Ť	Ť	Ť	Ť	Ť
ARTHRITIS DRUGS	50%	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ŷ
ALZHEIMER'S DRUGS	70%	Ť	Ť	r	Ť	Ť	Ť	Ť	Ť	İ	Ť
CANCER DRUGS	75%	Ť	Ť	Ť	Ť	Ť	Ť	Ť	İ	Ť	Ť

Specially in high-stake decision scenarios



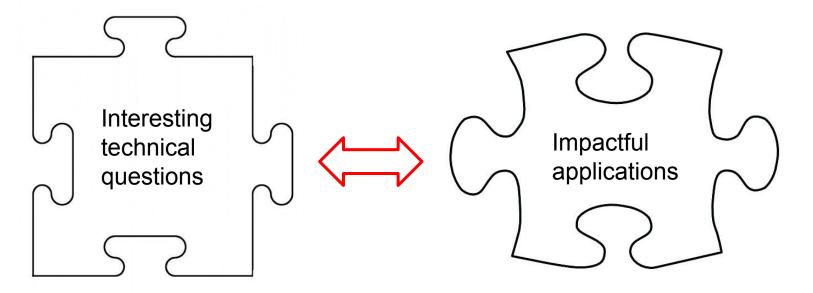






Time

My research: probabilistic models for societal needs



- <u>Design probabilistic models</u> (modeling/inference) for real-world applications
- Crucial: <u>multidisciplinary</u> collaboration

My research: probabilistic models for societal needs

Highly driven by real-world application, with special emphasis on...

- A) Latent Representation Learning
 - Case-control Indian Buffet Process [Pradier et.al, 2019]
 - General Latent Feature Models [Valera et.al, 2018]
 - Hierarchical Stick-breaking Paintbox [Pradier et.al, 2018]

B) Uncertainty Quantification

- Projected Bayesian Neural Networks [Pradier et.al, 2018]
- Poisson Process Radial Basis Function Networks [ongoing]
- Output-Constrained Bayesian Neural Networks [Yang et.al, 2019]

My research: probabilistic models for societal needs

Highly driven by real-world application, with special emphasis on...

- A) Latent Representation Learning
 - Case-control Indian Buffet Process [Pradier et.al, 2019]
 - General Latent Feature Models [Valera et.al, 2018]
 - Hierarchical Stick-breaking Paintbox [Pradier et.al, 2018]

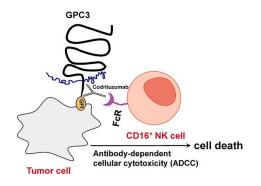
B) Uncertainty Quantification

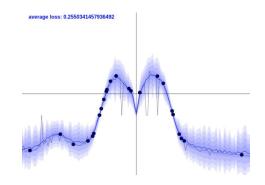
- Projected Bayesian Neural Networks [Pradier et.al, 2018]
- Poisson Process Radial Basis Function Networks [ongoing]
- Output-Constrained Bayesian Neural Networks [Yang et.al, 2019]

Agenda from now on...

Applications of Latent Variable Models (LVMs) for:

- 1. Data Exploration
 - Biomarker discovery in clinical trials
- 2. Uncertainty Quantification
 - Inference framework for Bayesian neural networks





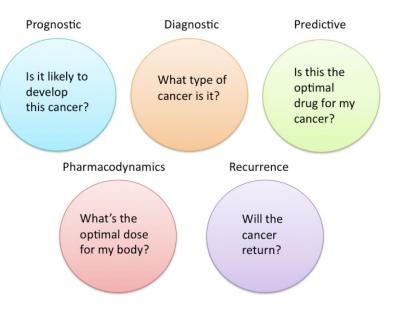
Goal 1: Data exploration

Objective: Biomarker discovery

Biomarkers used everywhere, e.g.,

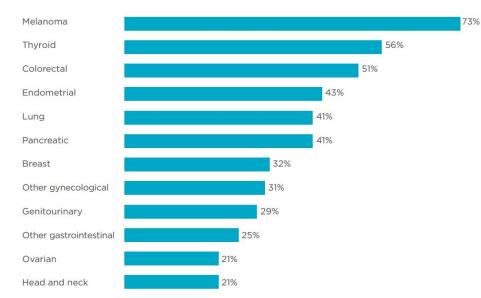
- Prostate-specific antigen (PSA) to diagnose prostate cancer
- Estrogen / progesterone to predict sensitivity to endocrine therapy in breast cancer
- KRAS mutation to predict resistance to EGFr antibody treatment

Biomarker = "any variable that can be used as an indicator of a particular disease state"



Biomarker discovery is expensive

TACKLING TUMORS: Percentage of patients whose tumors were driven by certain genetic mutations that could be targets for specific drugs, by types of cancer.



Source: *Wall Street Journal* Copyright 2011 by DOW JONES & COMPANY, INC. Reproduced with permission of DOW JONES & COMPANY, INC.

ANNUAL COST OF CANCER DRUGS

New cancer medicines now routinely cost more than \$100,000 yearly, which can create hardships even for insured patients. Top 10 oncological drugs by annual cost:

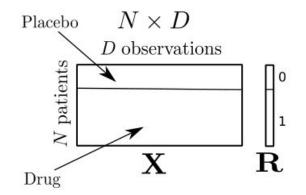
Omacetaxine for chronic myeloid leukemia \$168.366 Ibrutinib mantle cell lymphoma \$157.440 Crizotinib non-small-cell lung cancer \$156.544 Pomalidomide multiple myeloma \$150,408 Regorafenib colorectal cancer \$141.372 Sorafenib papillary thyroid cancer \$140.984 Ponatinib chronic myeloid leukemia¹ \$137.952 Trametinib malignant melanoma \$125.280 Lenalidomide mantle cell lymphoma \$124.870 Cabozantinib medullary thyroid cancer \$118.800

Among drugs approved between 2009 and 2013 by the Food and Drug Administration 1 – Also for Ph+ acute lymphoblastic leukemia SOURCE: JAMA Oncology, 2015 George Petras, USA TODAY

Problem formulation

Clinical trial scenario



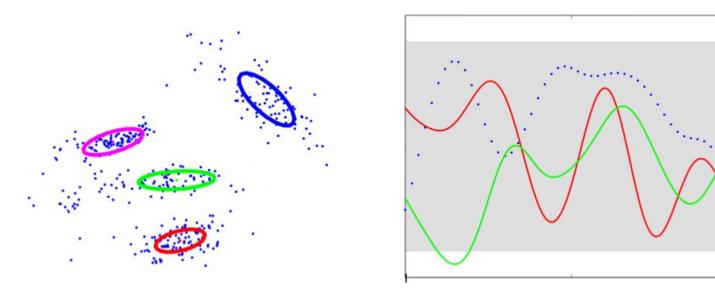


We want to discover:

- Indicators of disease progression: prognostic biomarkers
- **2** Indicators of (positive) drug response: predictive biomarkers

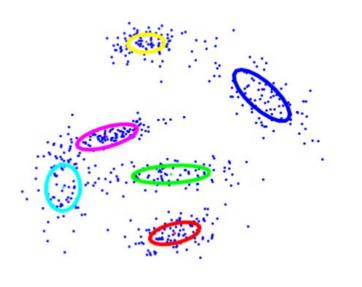
Bayesian nonparametrics

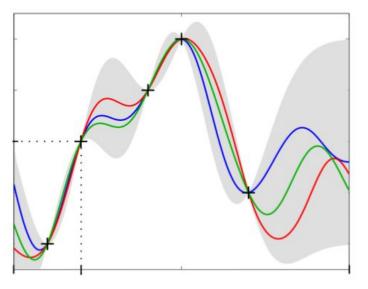
- Bayesian: to handle uncertainty $p(\mathbf{\Phi}|\mathbf{X}) \propto p(\mathbf{X}|\mathbf{\Phi})p(\mathbf{\Phi})$
- Nonparametric: to adapt model complexity depending on input data (hypothesis generation)



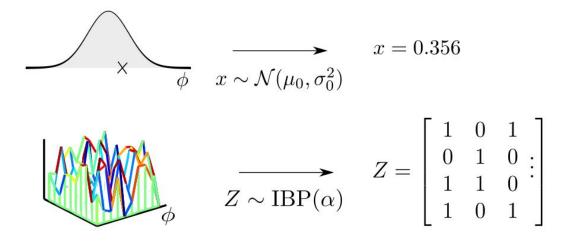
Bayesian nonparametrics

- Bayesian: to handle uncertainty $p(\mathbf{\Phi}|\mathbf{X}) \propto p(\mathbf{X}|\mathbf{\Phi})p(\mathbf{\Phi})$
- Nonparametric: to adapt model complexity depending on input data (hypothesis generation)





Indian Buffet Process (Ghahramani et.al, 2006)



- Prior over binary matrices with infinite number of columns
- Rows \equiv observations; columns \equiv features
- $\mathbf{Z} \sim \text{IBP}(\alpha)$
- α : concentration parameter

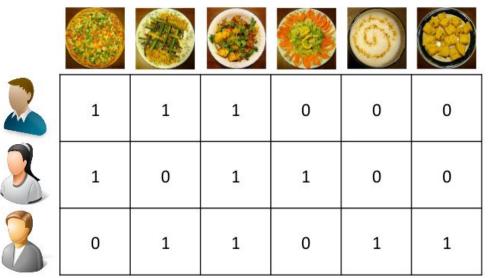
Indian Buffet Process (Ghahramani et.al, 2006)

Credit: slide from F. J. R. Ruiz

- .
- .

Indian Buffet Process (Ghahramani et.al, 2006)

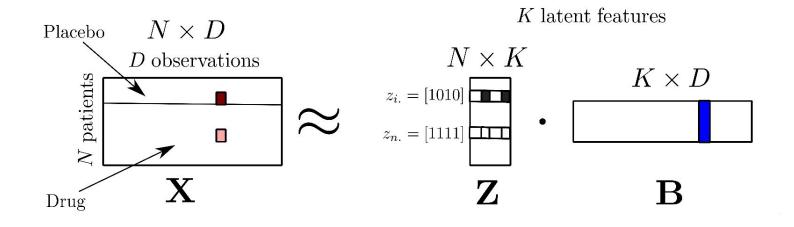
Credit: slide from F. J. R. Ruiz



. . .

- •
- .
- .

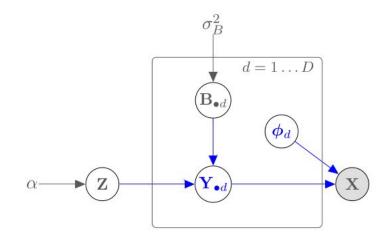
Infinite latent feature model (intuition)



• $x_{id} = 173 \text{ ml/dL} = 73 + 0 + 100 \text{ ml/dL}$ • $x_{nd} = 136 \text{ ml/dL} = 86 + 40 + 60 - 50 \text{ ml/dL}$

General Latent Feature Model (GLFM)

Latent feature model for heterogeneous datasets



• Link functions T_d depend on type of data for each dimension d

$$x_{nd} = T_d(y_{nd}; \phi_d)$$

$$y_{nd} | \mathbf{Z}, \mathbf{B} \sim \mathcal{N}(\mathbf{Z}_{n \bullet} \mathbf{B}_{\bullet d}, \sigma_y^2)$$

$$B_{kd} \sim \mathcal{N}(0, \sigma_B^2)$$

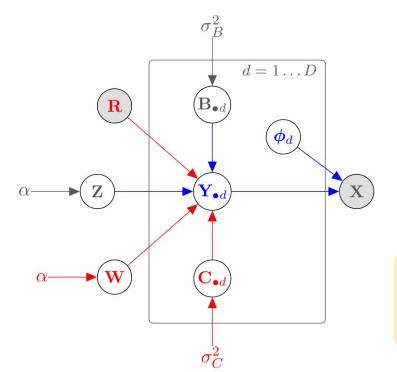
$$\mathbf{Z} \sim \text{IBP}(\alpha)$$

Open-source python code

https://github.com/ivaleraM/GLFM

I. Valera, <u>M. F. Pradier</u>, M. Lomeli, and Z. Ghahramani. **General Latent Feature Models for Heterogeneous Datasets**. *In submission to Journal of Machine Learning Research*. 2018.

Case-Control Indian Buffet Process (C-IBP)



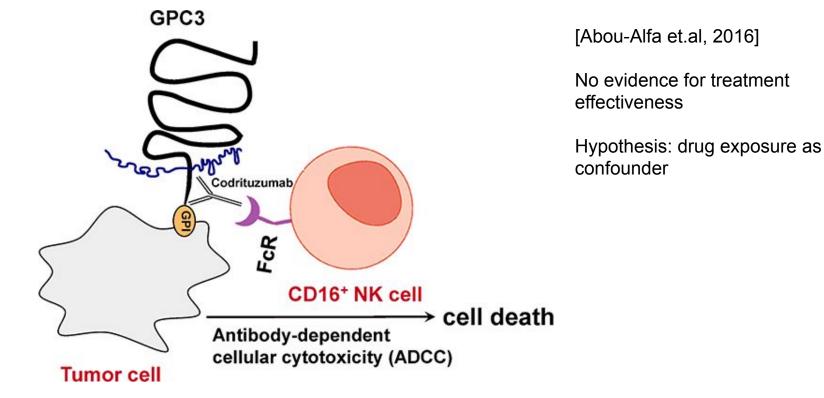
 R_n : drug indicator por patient n

 $\begin{aligned} x_{nd} &= T_d(y_{nd}; \phi_d) \\ y_{nd} | \mathbf{Z}, \mathbf{W}, \mathbf{B}, \mathbf{C}, \mathbf{R} \sim \\ \mathcal{N}(\mathbf{Z}_{n \bullet} \mathbf{B}_{\bullet d} + \mathbb{1}[\mathbf{R}_n = 1] \mathbf{W}_{n \bullet} \mathbf{C}_{\bullet d}, \sigma_y^2) \\ B_{kd} \sim \mathcal{N}(0, \sigma_B^2) \\ \mathbf{Z} \sim \mathsf{IBP}(\alpha) \\ C_{kd} \sim \mathcal{N}(0, \sigma_C^2) \\ \mathbf{W} \sim \mathsf{IBP}(\alpha) \end{aligned}$

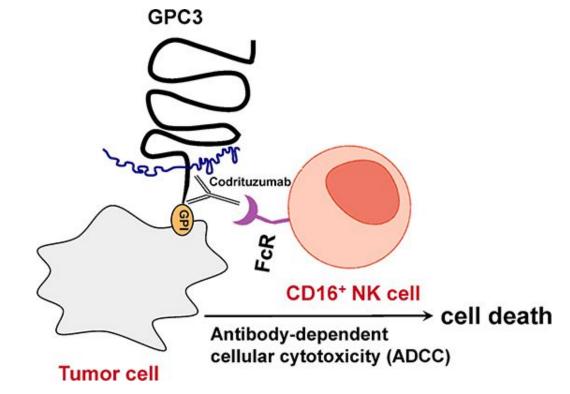
- Inference: MCMC approach with accelerated Gibbs sampling
- Biomarker discovery: statistical multiple hypothesis testing

<u>M. F. Pradier</u>, B. Reis, L. Jukofsky, F. Milletti, T. Ohtomo, F. Perez-Cruz, and O. Puig. **Case-control Indian Buffet Process identifies biomarkers of response to Codrituzumab**. *Accepted to BMC Cancer*. 2019.

Application: Immunotherapy treatment for liver cancer



Application: Immunotherapy treatment for liver cancer



[Abou-Alfa et.al, 2016]

No evidence for treatment effectiveness

Hypothesis: drug exposure as confounder

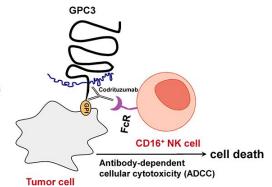
What did we found?

- Subgroup for which treatment is especially effective
- Relevant biomarkers (drug acting as expected)

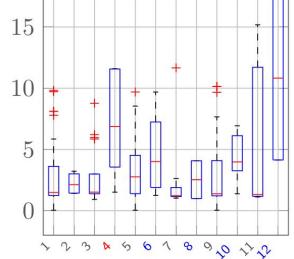
Results: subpopulations

GPC3 Antibody Treatment against Liver Cancer (J. Hepatology. 2016 Apr, Abou-Alfa et.al.)

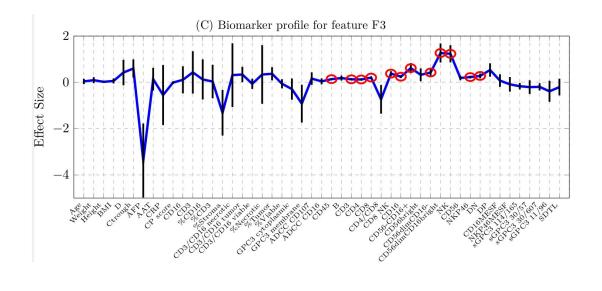
- 180 patients: 60 took a placebo, 120 took the drug
- PFS: Progression Free Survival

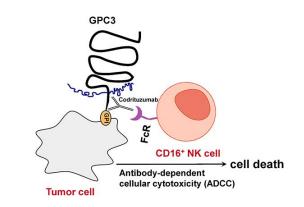


Sub-population	Drug Identifier	F1	F2	F3	Size (number of patients)	Mean PFS (months)	Median PFS (months)	-	15	
1.	0	0	0	0	33.37	3.06	1.65			
2.	0	0	1	0	4.07	2.29	2.24	- Li	10	
3.	0	1	0	0	17.84	2.72	1.81	nt	10	+
4.	0	1	1	0	4.72	7.05	7.18	(months)		+ +
5.	1	0	0	0	51.52	3.22	2.55	L L		
6.	1	0	0	1	16.77	4.17	3.65	S		- ≢
7.	1	0	1	0	8.38	1.74	1.33	PFS	5	
8.	1	0	1	1	2.07	2.69	2.65			
9.	1	1	0	0	29.88	3.36	2.03			
10.	1	1	0	1	4.90	4.44	4.34		0	T
11.	1	1	1	0	4.53	6.31	5.31		U	
12.	1	1	1	1	1.94	10.04	10.01			
										~ 9. 3 D



Results: biomarker profiles





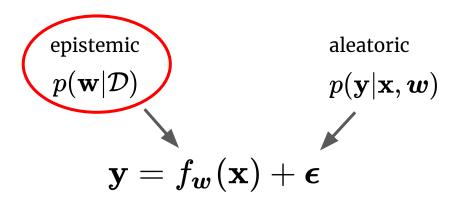
Take-away message:

- LVMs useful to identify hidden patterns underlying data
- Challenge addressed: data heterogeneity (both across dimensions and observations)

<u>M. F. Pradier</u>, B. Reis, L. Jukofsky, F. Milletti, T. Ohtomo, F. Perez-Cruz, and O. Puig. **Case-control Indian Buffet Process identifies biomarkers of response to Codrituzumab**. *Accepted to BMC Cancer*. 2019.

Goal 2: Uncertainty quantification

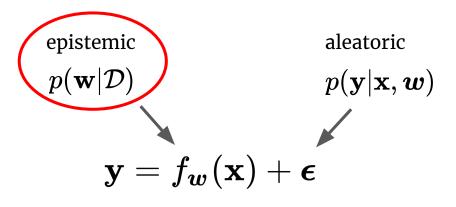
Two sources of uncertainty



[Depeweg et.al, 2017]

Goal 2: Uncertainty quantification

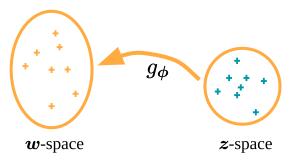
Two sources of uncertainty



[Depeweg et.al, 2017]

High-level idea

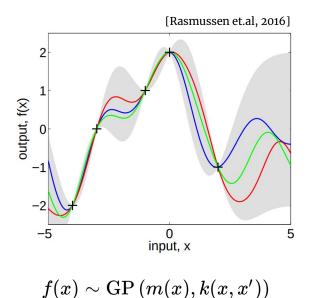
• Approximate $f_{oldsymbol{w}}$ with a Bayesian Neural Network



• Modeling + inference contributions

How to estimate function uncertainty?

Gaussian Process (GP)



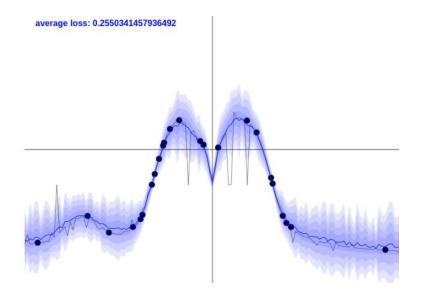
Drawbacks of GPs

- Scalability
- Kernel learning is not trivial

Alternative: Neural Networks with uncertainty

- Ensemble of Neural Networks [Lakshminarayanan et al., 2017; Pearce et.al, 2018]
- Bayesian Neural Networks [Buntine et al., 1991; MacKay, 1992; Neal, 1993]

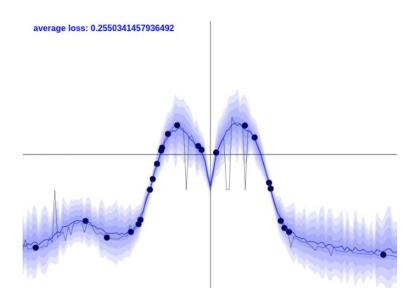
Bayesian Neural Network (BNN)



$$egin{aligned} \mathcal{D} &= \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N \ oldsymbol{w} &\sim \mathcal{N}(0, \sigma_w^2 \mathbf{I}), \quad oldsymbol{\epsilon} &\sim \mathcal{N}(0, \sigma_\epsilon^2 \mathbf{I}) \end{aligned}$$

[What my deep model does not know, post of Yarin Gal, 2015]

Bayesian Neural Network (BNN)



[What my deep model does not know, post of Yarin Gal, 2015]

$$egin{aligned} \mathcal{D} &= \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N \ oldsymbol{w} &\sim \mathcal{N}(0, \sigma_w^2 \mathbf{I}), \quad oldsymbol{\epsilon} &\sim \mathcal{N}(0, \sigma_\epsilon^2 \mathbf{I}) \end{aligned}$$

Quantities of interest:

• Posterior of the weights

$$p(oldsymbol{w}|\mathcal{D})$$

• Predictive distribution

 $p(\mathbf{y}^{\star}|\mathbf{x}^{\star},\mathcal{D}) = \int p(\mathbf{y}^{\star}|\mathbf{x}^{\star},oldsymbol{w}) p(oldsymbol{w}|\mathcal{D}) doldsymbol{w}$

 $p(\boldsymbol{w}|\mathcal{D})$

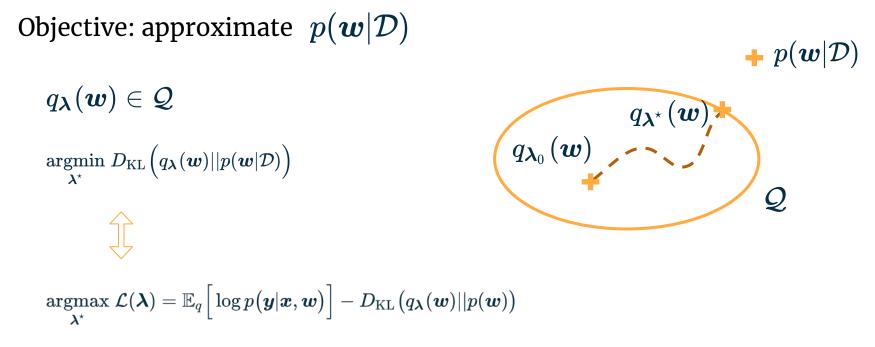
is intractable!

Inference options:

- Markov Chain Monte Carlo Hamiltonian Monte Carlo [Neal, 1993]
- Variational Inference [Graves, 1993] [Blundell et.al, 2015]

Variational Inference for BNNs

[Blundell et.al, 2015]



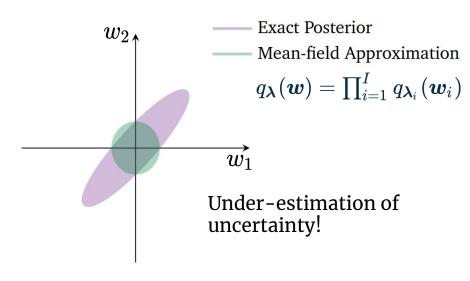
Black-box VI [Ranganath et.al, 2013] + reparametrization trick [Kingma et.al, 2014; Rezende et.al, 2015]

Variational Inference for BNNs

[Blundell et.al, 2015]

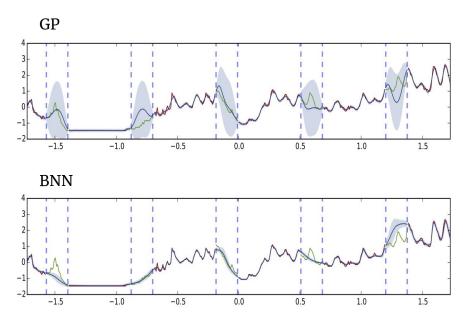
Objective: approximate $p(\boldsymbol{w}|\mathcal{D})$ $+ p(\boldsymbol{w}|\mathcal{D})$ $q_{oldsymbol{\lambda}}(oldsymbol{w})\in\mathcal{Q}$ $q_{{oldsymbol{\lambda}}^\star}({oldsymbol{w}})$ $q_{oldsymbol{\lambda}_0}(oldsymbol{w})$ $\operatorname*{argmin}_{\boldsymbol{\lambda}^\star} D_{\mathrm{KL}} \Big(q_{\boldsymbol{\lambda}}(\boldsymbol{w}) || p(\boldsymbol{w} | \mathcal{D}) \Big)$ Q $rgmax_{oldsymbol{\lambda}} \mathcal{L}(oldsymbol{\lambda}) = \mathbb{E}_q \Big[\log pig(oldsymbol{y} | oldsymbol{x}, oldsymbol{w}ig) \Big] - D_{ ext{KL}}ig(q_{oldsymbol{\lambda}}(oldsymbol{w}) || p(oldsymbol{w})ig)$

Is mean-field VI good enough?



• Several works on more flexible variational approximation families

Example on solar irradiance dataset [Gal et.al, 2015]



Related works

- Structured Variational Approximations
 - Multivariate Gaussians [Louizos et.al, 2016; Sun et.al, 2017]
 - Hierarchical Variational Models [Ranganath et.al, 2016]
- Normalizing Flows and Transformations
 - Multiplicative Normalizing Flow [Louizos et. al, 2017]
 - Hypernetworks [Krueger et.al, 2017; Pawlowski et.al, 2017]
- Ensembles of Neural Networks [Lakshminarayanan et al., 2017; Pearce et al., 2018]

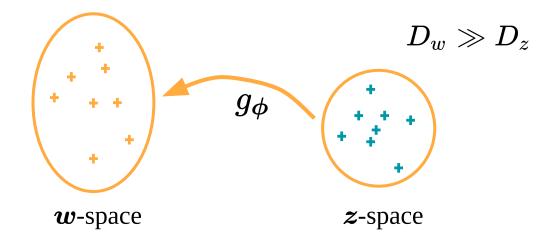
Standard BNN

$$oldsymbol{y} = f_{oldsymbol{w}}(oldsymbol{x}) + oldsymbol{\epsilon}, ~~oldsymbol{w} \sim \mathcal{N}(0, \sigma_w^2 \mathbf{I}), \ oldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma_\epsilon^2 \mathbf{I})$$

Weight redundancy [Denil et.al, 2013; Frankle et.al, 2019; ...]

Projected BNN

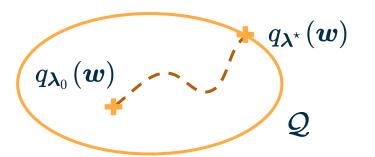
 $egin{aligned} oldsymbol{y} &= f_{oldsymbol{w}}(oldsymbol{x}) + oldsymbol{\epsilon}, \ oldsymbol{w} &= g_{oldsymbol{\phi}}(oldsymbol{z}), \quad oldsymbol{z} \sim p(oldsymbol{z}), \quad oldsymbol{\phi} \sim p(oldsymbol{\phi}), \ oldsymbol{\epsilon} &\sim \mathcal{N}(0, \sigma_{\epsilon}^2 \mathbf{I}) \end{aligned}$



How about inference?

Objective: approximate $\ p(oldsymbol{w} | \mathcal{D})$

 $egin{aligned} q_{oldsymbol{\lambda}}(oldsymbol{w}) \in \mathcal{Q} \ rgmin_{oldsymbol{\lambda}^{\star}} D_{ ext{KL}}ig(q_{oldsymbol{\lambda}}(oldsymbol{w})||p(oldsymbol{w}|\mathcal{D})ig) \end{aligned}$



 $+ p(\boldsymbol{w}|\mathcal{D})$

$$rgmax_{oldsymbol{\lambda}^\star} \mathcal{L}(oldsymbol{\lambda}) = \mathbb{E}_q \Big[\log pig(oldsymbol{y} | oldsymbol{x}, oldsymbol{w} ig) \Big] - D_{ ext{KL}}ig(q_{oldsymbol{\lambda}}(oldsymbol{w}) || p(oldsymbol{w}) ig)$$

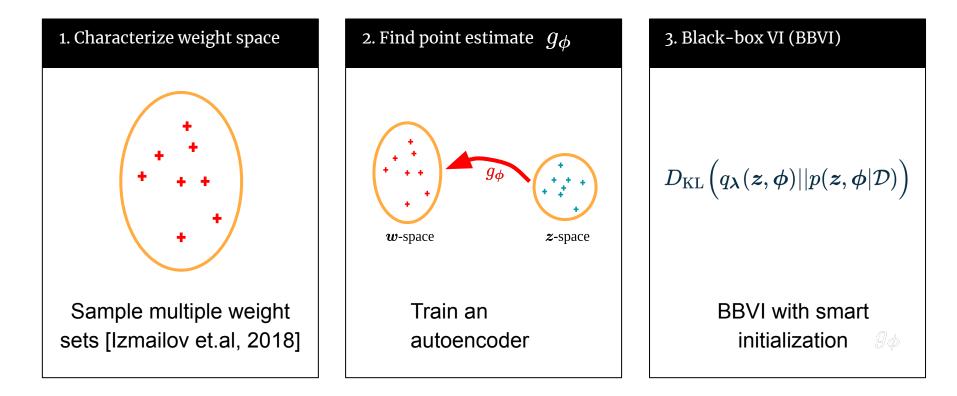
How about inference?

Objective: approximate $p(\boldsymbol{z}, \boldsymbol{\phi} | \mathcal{D})$ + $p(\boldsymbol{z}, \boldsymbol{\phi} | \mathcal{D})$ $oldsymbol{z} \sim q_{oldsymbol{\lambda}_z}(oldsymbol{z}), \quad oldsymbol{\phi} \sim q_{\lambda_\phi}(oldsymbol{\phi}), \quad oldsymbol{w} = g_{oldsymbol{\phi}}(oldsymbol{z})$ $q_{\lambda^{\star}}(\boldsymbol{z}, \boldsymbol{\phi})$ $q_{\boldsymbol{\lambda}_0}(\boldsymbol{z}, \boldsymbol{\phi})$, --- $\operatorname*{argmin}_{oldsymbol{\lambda}^{\star}} D_{\mathrm{KL}}\Big(q_{oldsymbol{\lambda}}(oldsymbol{z},oldsymbol{\phi})||p(oldsymbol{z},oldsymbol{\phi}|\mathcal{D})\Big)$ $rgmax \mathcal{L}(oldsymbol{\lambda}) = \mathbb{E}_q \Big[\log pig(oldsymbol{y} | oldsymbol{x}, g_{oldsymbol{\phi}}(oldsymbol{z})ig) \Big] - D_{ ext{KL}}ig(q_{oldsymbol{\lambda}_z}(oldsymbol{z}) | | p(oldsymbol{z})ig) - D_{ ext{KL}}ig(q_{oldsymbol{\lambda}_\phi}(oldsymbol{\phi}) | | p(oldsymbol{\phi})ig)$

How about inference?

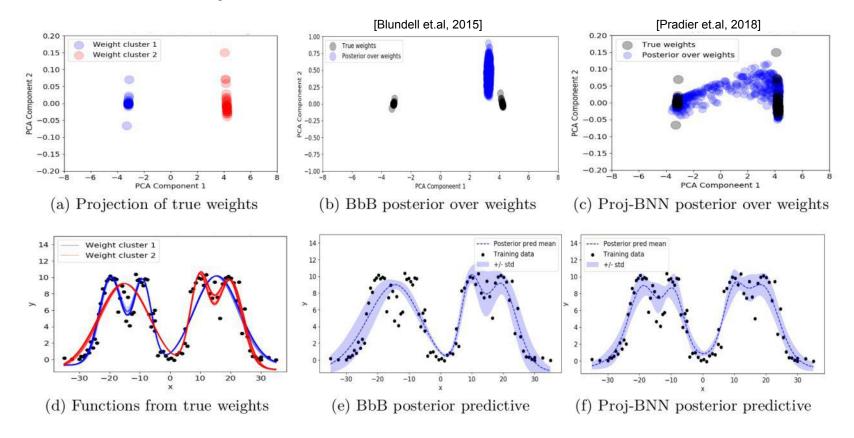
Objective: approximate $p(\boldsymbol{z}, \boldsymbol{\phi} | \mathcal{D})$ + $p(\boldsymbol{z}, \boldsymbol{\phi} | \mathcal{D})$ $oldsymbol{z} \sim q_{oldsymbol{\lambda}_s}(oldsymbol{z}), \quad oldsymbol{\phi} \sim q_{\lambda_{\phi}}(oldsymbol{\phi}), \quad oldsymbol{w} = g_{oldsymbol{\phi}}(oldsymbol{z})$ $q_{\lambda^{\star}}(\boldsymbol{z}, \boldsymbol{\phi})$ $q_{\boldsymbol{\lambda}_0}(\boldsymbol{z}, \boldsymbol{\phi})$ - - $\operatorname{argmin}_{\lambda^{\star}} D_{\mathrm{KL}} \left(q_{\boldsymbol{\lambda}}(\boldsymbol{z}, \boldsymbol{\phi}) || p(\boldsymbol{z}, \boldsymbol{\phi} | \mathcal{D}) \right)$ $rgmax_{\mathbf{\lambda}} \mathcal{L}(\boldsymbol{\lambda}) = \mathbb{E}_q \Big[\log pig(oldsymbol{y} | oldsymbol{x}, g_{oldsymbol{\phi}}(oldsymbol{z}) ig) \Big] - D_{ ext{KL}}ig(q_{oldsymbol{\lambda}_z}(oldsymbol{z}) || p(oldsymbol{z}) ig) - D_{ ext{KL}}ig(q_{oldsymbol{\lambda}_\phi}(oldsymbol{\phi}) || p(oldsymbol{\phi}) ig)$

Extra: 3-stage Inference Framework

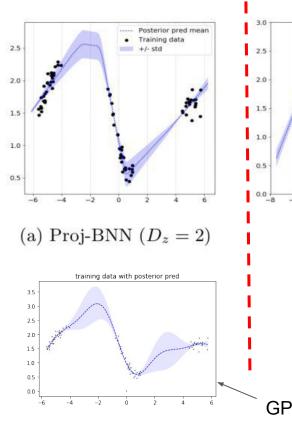


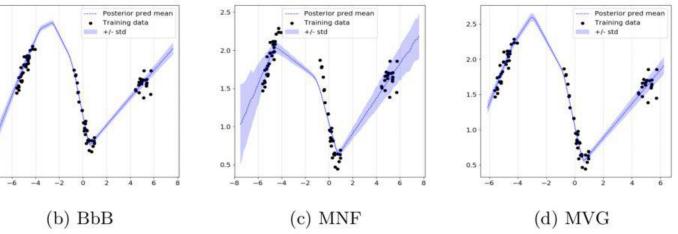
Results

Illustrative Toy Example



Results: Uncertainty estimation

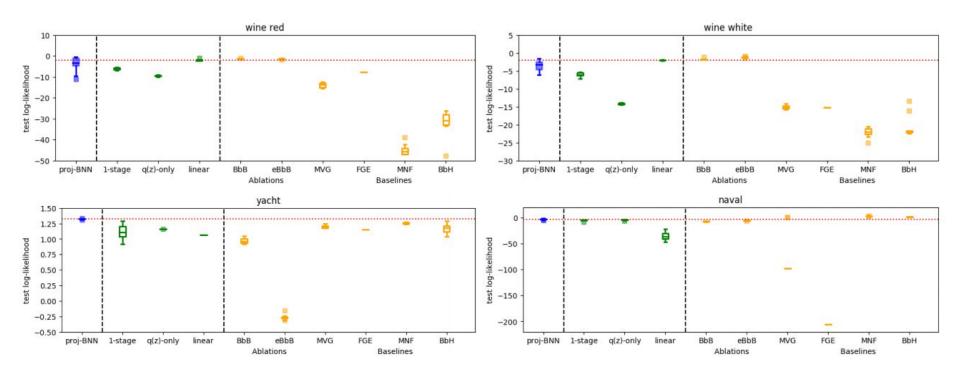




- BbB: Bayes by Back Prop [Blundell et.al, 2015]
- MVG: Multivariate Gaussians [Louizos et.al, 2016]
- MNF: Multiplicative Normalizing Flow [Louizos et. al, 2017]

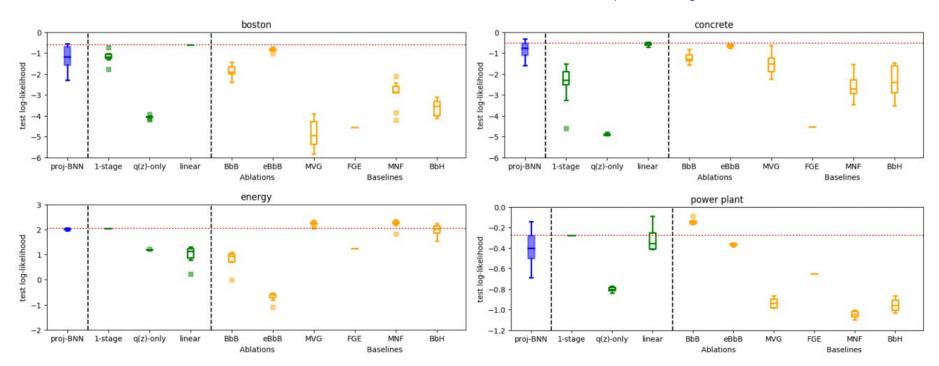
Results: Generalization

https://arxiv.org/abs/1811.07006



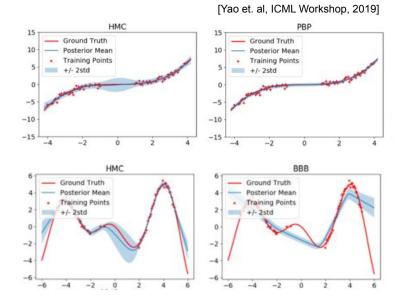
Results: Generalization

https://arxiv.org/abs/1811.07006

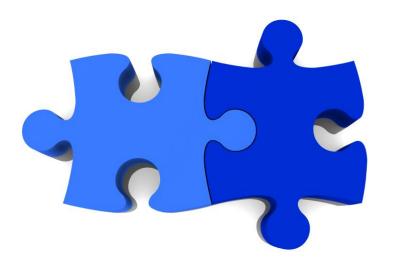


Open questions

- Better evaluation of uncertainty?
 - ``Test log likelihood can be misleading"
- > Entangled sources of error: model, variational approx, optimization
- How does the topology in weight space looks like?
 Intuition misleading in high dimensions!
 - How to exploit latent structure for interpretability?



Conclusions



In this talk, two applications of LVMs

1. Data exploration

- a. Infinite latent feature model for heterogeneous datasets
- b. Global and group specific factors

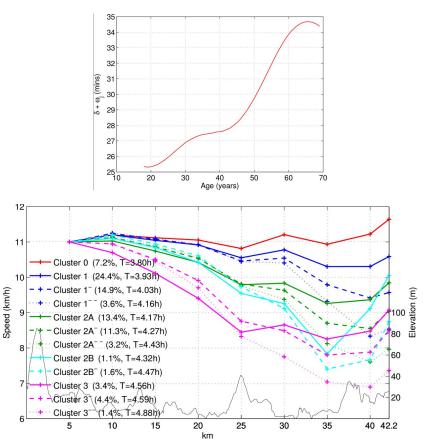
https://ivaleram.github.io/GLFM/

- 2. Uncertainty quantification
 - a. Alternative modeling for BNNs
 - b. Better approximate inference

https://arxiv.org/abs/1811.07006

Other projects...

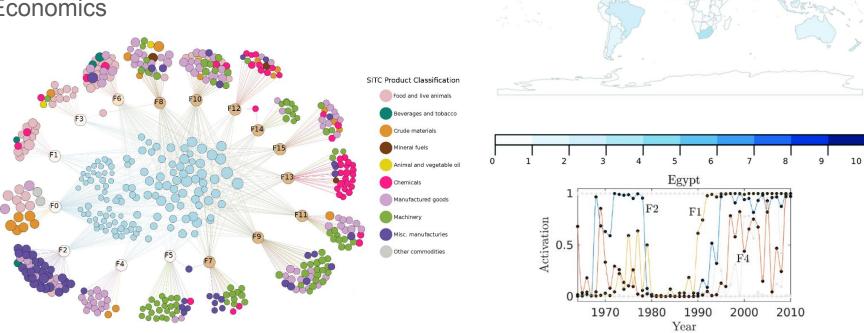
Sport Science



<u>M. F. Pradier</u>, F. J. R. Ruiz, and F. Perez-Cruz. **Prior Design for Dependent Dirichlet Processes: An Application to Marathon Modeling**. *PlosONE*. 2016.

Other projects...

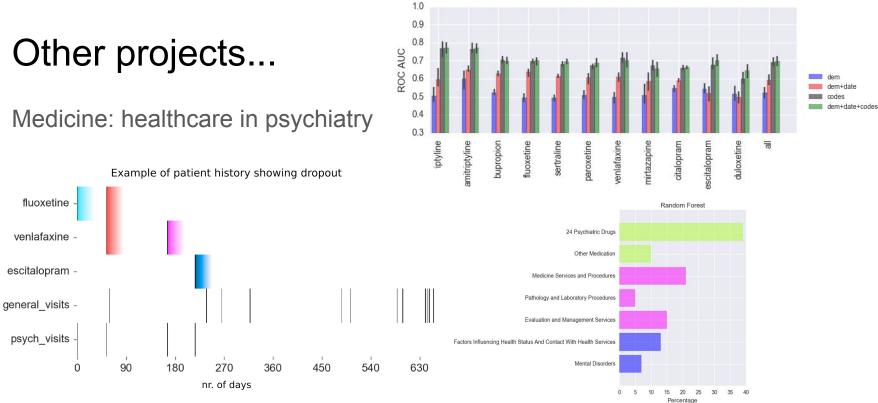
Economics



Z. Utkovski, M. F. Pradier, V. Stojkoski, L. Kocarev and F. Perez-Cruz. Economic Complexity Unfolded: An Interpretable Model for the Productive Structure of Economies. PlosONE. 2018.

Other projects...

Medicine: healthcare in psychiatry



M. F. Pradier, T. H. McCoy, M. Hughes, R. H. Perlis and F. Doshi-Velez. Predicting Treatment Discontinuation after Antidepressant Initiation. Accepted to Mol. Psychiatry. 2019. M. F. Pradier, M. Hughes, T. H. McCoy, S. Barroilhet, F. Doshi-Velez and R. H. Perlis. Predicting Transition from Mayor Depression to Bipolar

Disorder after Antidepressant Initiation. Submitted to American Journal of Psychiatry. 2019.

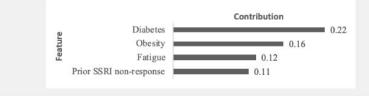
From the lab to the clinic

[M. Jacobs et.al]

- Ongoing user study at MGH, Boston
 - Impact of explanations
 - Usefulness, trust...

Why are these therapies being recommended?

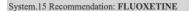
The following patient features had the highest contributions to system.13's predictions:



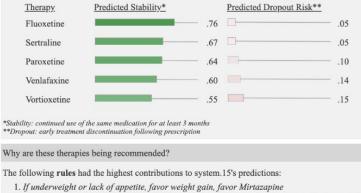
Which antidepressant medication would you be most likely to prescribe in this situation?

Patient Details:

Jessica is a 37 year old woman who is married and works part time. She presents with 9 months of depressed mood and lack of appetite. She has a seizure disorder, and current medications include Omeprazole and Celecoxib. Prior treatment with Citalopram had no effect on depressed mood.



Top 5 therapies with highest probability for stability:



- If underweight or lack of appetite, avoid appetite suppressants, avoid nausea-inducing, avoid SNRI's, avoid Sertraline
- 3. If lack of response to Paroxetine, avoid SSRI's

Current research agenda

Contact: melanie@seas.harvard.edu

https://melaniefp.github.io/

Impact in real-world problems:

- Personalize prescription of antidepressants
- In-vitro Fertilization

ML research questions:

- How to better quantify model uncertainty?
- How to incorporate expert knowledge?
- Which latent representations are most useful?

Thank you!

Weiwei Pan

Jiayu Yao

Soumya Ghosh

Maia Jacobs

Finale Doshi-Velez

at Harvard John A. Paulson School of Engineering and Applied Sciences

https://melaniefp.github.io/

Special thanks to:

- Finale Doshi-Velez
- Weiwei Pan
- Michael Hughes
- All members of dtak!
- Francisco Rodriguez Ruiz
- Fernando Perez-Cruz
- Isabel Valera
- Maria Lomeli
- Zoubin Ghahramani
- Oscar Puig
- Francesca Milletti

at Harvard John A. Paulson School of Engineering and Applied Sciences

https://melaniefp.github.io/

Interpretable Machine Learning

Interpretability

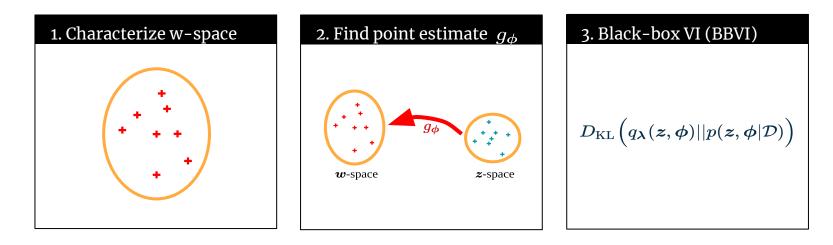
- "ability to explain or to present in understandable terms to a human" (Doshi-Velez and Kim, 2017)
- requirement in the 2018 EU General Data Protection Regulation (Goodman et.al. 2016)

Interpretable Machine Learning

- Interpretable models to explain black-boxes
 - Local Interpretable Explanations (Ribeiro et.al, 2016)
 - Interpretable Decision Sets (Lakkaraju et.al, 2016)
- Interpretable models from scratch
 - Tree-regularization of deep models (Wu et.al, 2017)
 - Input-gradient regularization (Ross et.al, 2017)

In this talk, interpretability via prob. graphical models

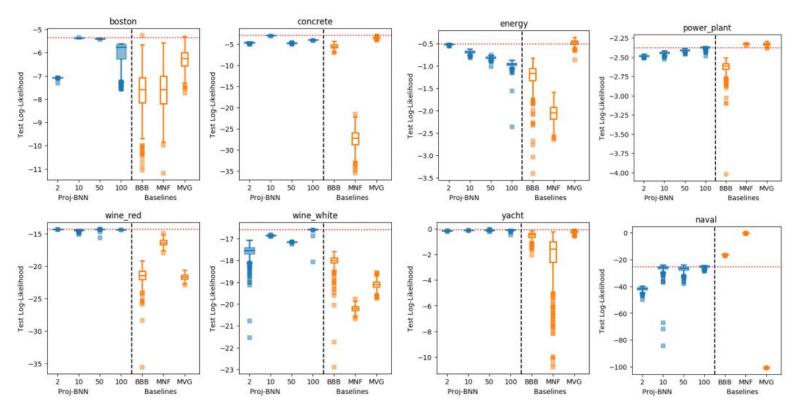
Results: Generalization (Ablations)



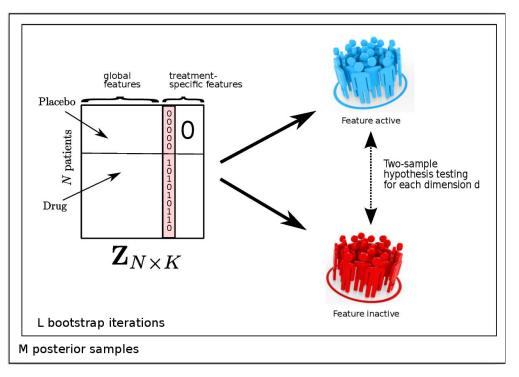
1-stage	\bigotimes	\bigotimes	\bigotimes
linear	$\overline{\diamond}$	linear	$\overline{\heartsuit}$
q(z) only	Š	\bigotimes	$q_{oldsymbol{\lambda}_z}(oldsymbol{z})$

Cross-validation of latent dimension

https://arxiv.org/abs/1811.07006



Statistical methodology for biomarker discovery



<u>M. F. Pradier</u>, B. Reis, L. Jukofsky, F. Milletti, T. Ohtomo, F. Perez-Cruz, and O. Puig. **Case-control Indian Buffet Process identifies biomarkers of response to Codrituzumab**. *BMC Cancer*. 2019.

Prediction-constrained Autoencoder

$$\{\boldsymbol{\theta}^{\star}, \boldsymbol{\phi}^{\star}\} = \underset{\boldsymbol{\theta}, \boldsymbol{\phi}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \underset{\boldsymbol{\theta}, \boldsymbol{\phi}}{\operatorname{min}} \left\{ \frac{1}{R} \sum_{r=1}^{R} \left(\mathbf{w}_{\mathbf{c}}^{(r)} - g_{\boldsymbol{\phi}} \left(f_{\boldsymbol{\theta}} \left(\mathbf{w}_{\mathbf{c}}^{(r)} \right) \right) + \gamma^{(r)} \right)^{2} \right. \\ \left. + \beta \mathbb{E}_{(x, y) \sim \mathcal{D}} \left[\frac{1}{R} \sum_{r=1}^{R} \log p(y | x, g_{\boldsymbol{\phi}} \left(f_{\boldsymbol{\theta}} \left(\mathbf{w}_{\mathbf{c}}^{(r)} \right) \right) \right] \right\},$$

My research: probabilistic models for societal needs

Highly driven by real-world application, with special emphasis on...

A) Latent Representation Learning

<u>M. F. Pradier</u>, B. Reis, L. Jukofsky, F. Milletti, T. Ohtomo, F. Perez-Cruz, and O. Puig. **Case-control Indian Buffet Process identifies biomarkers of response to Codrituzumab**. *BMC Cancer*. 2019.

I. Valera, <u>M. F. Pradier</u>, M. Lomeli, and Z. Ghahramani. **General Latent Feature Models for Heterogeneous Datasets**. *In submission to Journal of Machine Learning Research*. 2018.

<u>M. F. Pradier</u>, W. Pan, M. Yau, R. Singh, and F. Doshi-Velez. **Hierarchical Stick-breaking Paintbox**. *BNP@NeurIPS Workshop*. Montreal (Canada), December 2018.

B) Uncertainty Quantification

M. F. Pradier, W. Pan, J. Yao, S. Ghosh, and F. Doshi-Velez. Projected BNNs: Avoiding Pathologies in Weight Space by projecting Neural Network Weights. Arxiv. 2019.

B. Coker, M. F. Pradier, and F. Doshi-Velez. Poisson Process Radial Basis Function Networks. (Arxiv coming soon)

W. Yang, L. Lorch, M. A. Graule, S. Srinivasan, A. Suresh, J. Yao, <u>M. F. Pradier</u>, and F. Doshi-Velez. **Output-Constrained Bayesian Neural Networks**. *ICML Workshop on Generalization*. 2019.