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INTRODUCTION

• Gaussian Processes (GP) are useful to solve non-linear regression problems, but they are limited to unimodal Gaussian output distributions,
stationary functions and i.i.d noise scenarios.

Objective

• Build a probabilistic model for general non-linear regression
problems to deal with:

– arbitrary output distribution (including multimodality)
– non-stationary functions
– heteroscedastic noise

Paper Contributions
• A general model for non-linear regression: Infinite Mixture of

Global GPs (IMoGGP). Novel interpretation as a single-p Depen-
dent Dirichlet Process.

• An easy-to-implement MCMC sampling algorithm.

• Comparative results against Infinite Mixture of Experts (IMoE).

MODEL

We want to estimate y ∈ R given an inputx ∈ RD and a databaseDn = {xi, yi}ni=1,
that is

p(y|x,Dn). (1)

Our model is based on the stick-breaking construction of a Dirichlet Process (DP):

π|α ∼ GEM(α) (2)
zi|π ∼ Multinomial(π) (3)
θm|H ∼ H (4)
yi|zi, {θm} ∼ F (θzi), (5)

where GEM stands for the stick-breaking prior by Griffiths, Engen and McCloskey,
α is the concentration parameter of the DP, zi indicates the cluster assignment, θm
designates the cluster parameters, H is a base measure, and F (·) is the likelihood
function, typically Gaussian.

In the regression setting, each yi is associated with an input xi and we can directly
modify (5) as

yi|zi, {θm},xi ∼ F
(
θzi(xi)

)
, (6)

θm|H,φm ∼ Hφm , (7)

where we assume that F
(
θzi(xi)

)
is Gaussian-distributed with mean µzi(xi) and vari-

ance σ2
zi
(xi), and Hφm is a Gaussian process prior with hyperparameters φm.

• Now each cluster parameter θm corresponds to a latent function over the input
space.

• We can interpret the model as a Single-p Dependent Dirichlet Process whose
atoms are GP functions.

CONCEPTUAL COMPARISON OF METHODS

Figure 1: Conceptual comparison of different approaches. Sketch comparing a) Infinite Mixture of
Global GPs (proposed approach), b) Infinite Mixture of Experts, c) Overlapping GPs for multi-tracking,
d) Spatial Dirichlet Process, and e) time series clustering. Each color represents a different GP.

INFERENCE FOR THE IMOGGP

Algorithm 1 For each Gibbs sampling iteration:
1: Sample extended vector of mixture proportions:

π|z, α ∼ Dirichlet
(
n1, . . . nK , α/T . . . α/T︸ ︷︷ ︸

T times

)
(8)

2: Sample latent functions, i.e., cluster parameters θm, m = 1, . . . ,M+:

p(θm|π,y,X, z) ∝ p(θm|Hφm)p(y|X, z, θm) (9)

3: Sample cluster assignments:

p(zi|π, yi,xi, z−i, {θm}) ∝ p(zi|π) p(yi|xi, z, {θm}) (10)

4: Sample hyperparameters φm, m = 1, . . . ,M+:

p(φm|π,y,X, z) ∝ p(φm|H)p(y|X, z, φm) (11)

5: Sample concentration parameter α for the mixture model

• This algorithm is simple and computationally efficient, as it divides data into
mutiple GPs (we have smaller matrices to invert).

PROPERTIES

(a) Heteroscedasticity. (b) Non-Gaussianity. (c) Multimodality.

Figure 2: Properties that can be captured by the IMoGGP model: (a) non-stationary, heteroscedastic
noise; (b) non-Gaussian likelihoods, specifically a Student’s t with Gamma distributed noise; and, (c)
multimodal predictive distributions.

RESULTS

(a) (b) (c) (d) (e) (f)

sGP -0.0217 -3.4920 -3.3030 -0.5855 -1.6373 0.2033
IMoE 0.7017 -2.1248 -2.1604 1.9452 -1.6308 0.9943

PL
L

H

IMoGGP 0.9008 -2.1237 -1.2575 2.3587 -1.5723 0.9846

sGP 0.0288 4.8115 4.2815 93.4640 0.7877 86.6815
IMoE 0.0331 4.8394 5.2263 93.4640 0.7780 82.8929

M
SE

IMoGGP 0.0287 4.8500 4.2703 43.6710 0.7754 82.4264

Table 1: Comparison of the single GP (sGP), the Infinite Mixture of Experts (IMoE) and the pro-
posed Infinite Mixture of Global Gaussian Processes (IMoGGP). The three first columns correspond
to synthetic toy examples showed above: (a) Heteroscedasticity, (b) Non-Gaussianity, (c) Multimodal-
ity. The last three columns correspond to real databases available online: (d) Concrete, (e) Marathon,
(f) RSSI.

FUTURE WORK

• Study sensibility to hyperparameters.

• Relax constant weights assumption (similar to Kernel-based Stick breaking pro-
cess).

• Extend to higher dimensional problems (selection mechanism of input-
dimension).
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