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INTRODUCTION

Goal: Provide uncertainধes for predicধons of deep models.

Challenge: Characterizing uncertainty over parameters of modern neural networks in a Bayesian

seষng is difficult due to the high-dimensionality of the weight space and the complex paħerns of

dependencies among the weights.

Contribuধon: We propose a Bayesian neural network model, ProjBNN that encodes the uncer-

tainty in the weights of a neural network via a low dimensional latent space as well as a framework

for performing high-quality inference on this model.

LATENT PROJECTION BNN: MODEL

We posit that the neural network weights w are generated from a latent space or manifold of

much smaller dimensionality. That is, we assume the following generaধve model:

z ∼ p(z), φ ∼ p(φ), w = gφ(z), y ∼ N (fw(x), σ2
y) (1)

where w lies in RDw, the latent representaধon z lie in a lower dimensional space RDz , and φ
parametrizes the arbitrary projecধon funcধon gφ : RDz → RDw.

LATENT PROJECTION BNN: INFERENCE

Goal: Approximate posterior qλ(z, φ).
Variaধonal distribuধon: We propose a variaধonal distribuধon qλ(z, φ) = qλz

(z)qλφ
(φ) such that:

z ∼ qλz
(z), φ ∼ qλφ

(φ), w = gφ(z). (2)

We use a mean-field approximaধon for each independent term.

Inference Framework: We perform inference in three stages:

1. Characterize the space of plausible weights. Gather mulধple sets of weights {wc(r)}R
r=1 by

training an ensemble of R neural networks over random restarts.

2. Learn a point-esধmate for the projecধon funcধon. Train an autoencoder hθ,φ using

{wc(r)}R
r=1 as input data to:

minimize reconstrucধon loss

maximize predicধveness of the model fwc(r)

We call this model a predicࣅon-constrained autoencoder.

3. Learn the approximate posterior qλ(z, φ). Perform BBVI in latent space to learn an

approximate posterior distribuধon over latent representaধons z and projecধon parameters φ.

RESULTS: SYNTHETIC DATA

Take-away 1: Inference in latent space can provide beħer esধmates of posterior predicধve uncertainty.

(a) Proj-BNN (Dz = 2) (b) BBB (c) MNF (d) MVG

Figure: Inferred predicধve posterior distribuধon for a toy data set drawn from a NN with 1-hidden layer, 20 hidden nodes and RBF acধvaধon funcধons. LP-BNN is able to

learn a plausible predicধve mean and beħer capture predicধve uncertainধes.

Take-away 2: Inference in latent space can improve posterior predicধve quality by capturing complex geometries of the weight posterior.

(a) BNN (BBB) Posterior (b) BNN (BBB) Posterior Predicধve (c) LP-BNN Posterior (d) LP-BNN Posterior Predicধve

Figure: (a) shows the variaধonal posterior over weights, w, obtained by transforming the variaধonal posterior over z. Learning a variaধonal posterior over z captures both

modes in the weight space. (c) shows the variaধonal posterior over weights learned by performing inference directly on w, using Bayes by Back Prop (BBB). This posterior

captures only one mode in the weight space. (b) shows the posterior predicধve corresponding to the variaধonal posterior over z. The mean of the posterior predicধve

demonstrates four modes in the data. (d) shows the posterior predicধve corresponding to the variaধonal posterior over w using BBB. The mean of the posterior predicধve

demonstrates only three modes.

RESULTS: REAL DATA

Take-away 3: Inference in latent space can improve model generalizaধon.

Figure: Test log-likelihood for UCI benchmark datasets for best dimensionality of z-space. Red doħed horizontal line corresponds to LP-BNN performance (our approach).

Baselines methods are: 1) BBB: mean field (Blundell, et.al 2015); 2) MNF: mulধplicaধve normalizing flow (Louizos et.al, 2017); 3) MVG: mulধvariate Gaussian prior BNN

(Louizos et.al, 2016). Variants of LP-BNN are: LP-BNN, LP-BNN with linear projecধons (linear), LP-BNN without training the autoencoder, i.e., only stage 3 in inference

framework (1-stage), LP-BNN modeling uncertainty only in z (q(z)-only). In all but two cases LP-BNN performs beħer or as well as the benchmarks.

RELATEDWORK

Nearly all other approaches perform

inference directly on the weight space, for

example (Sun et.al, 2017; Louizos et.al, 2017;

Gal et.al, 2016) or works are based on

hypernetworks, neural networks that outputs

parameters of other networks (Krueger et.al,

2017; Pawlowski et.al, 2017). Instead, we

perform inference in a latent space of lower

dimensionality.

(Louizos et.al, 2017) linearly project BNN

weights layer-wise onto a latent space, on

which they define a complex approximate

posterior distribuধon via normalizing flows.

Our approach learns a non-linear projecধon

of the enࣅre network onto a latent space,

opধmizing a ধghter bound on the log

evidence.

We incorporate this uncertainty explicitly in

both our generaধve and variaধonal models.

In this spirit, (Karaletsos, et.al. 2018)

represents nodes in a neural network by

latent variables via a determinisࣅc linear

projecধon, and drawing the weights

condiধoned on those representaধons.

DISCUSSION

How to make it more scalable?

How can we exploit informaধon in latent

space for meta-learning?

Full arxiv version:

https://arxiv.org/abs/1811.07006
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