Melanie F. Pradier Fernando Perez-Cruz ${ }^{2}$
${ }^{1}$ Harvard University 2Swiss Data Science Center
mel lanie@seas.harvard.edu

Viktor Stojkoski ${ }^{3}$ Zoran Utkovski ${ }^{3,4}$ Ljupco Kocarev ${ }^{3,5}$
Macedonian Academy of Sciences and Arts UUniversity Goce Delcev in Stip
5Univesity of California in San Diego

SPARSE THREE-PARAM T ER RESTRICTED INDIA
FOR UNDERSTANDING INTERNATIONAL TRADE

RESULTS

- Aim: Explore high-dimensional count data.
a) Increase model interpretability.
b) Find structured solutions in latent space

Contribution: A Bayesian non-parametric Poisson factorization model that gives easy-to-interpret and structured solutions.

- Key Idea: Force sparsity in the features and improve prior flexibility to be consistent with reality, by combining the stable-beta process with the restricted Indian Buffet Process.

THEORETICAL BACKGROUND

Indian-Buffet Process (Ghahramani et.al, 2006

- Stochastic process defining a probability distribution over equivalent classes of
binary matrices. We denote: $\mathbf{Z} \sim \operatorname{IBP}(\alpha)$.
- It corresponds to the limit when $K \rightarrow \infty$ of parametric model

$$
\pi_{k} \sim \operatorname{Beta}(\alpha / K, 1),
$$

$$
\begin{equation*}
z_{n k} \sim \operatorname{Bernoulli}\left(\pi_{k}\right) \tag{1}
\end{equation*}
$$

It can also be constructed based on its underlying De Finetti's representation, i.e., as a mixture of Bernoulli processes directed by a beta process:

$$
\mu \sim \operatorname{BP}(1, \alpha, H)
$$

$$
\begin{aligned}
& \text { (2) } \\
& \text { (3) }
\end{aligned}
$$

where $\mu=\sum_{k} \pi_{k} \delta_{\theta_{k}}$ is the directing measure, and H is the probability base measure (Thibaux et.al, 2007).

- Disadvantage: Mass parameter α couples both a priori number of ones per row J_{n} and total number of active features K^{+}

$$
\begin{align*}
J_{n} & \sim \operatorname{Poisson}(\alpha) \tag{4}\\
K^{+} & \sim \operatorname{Poisson}\left(\alpha \sum_{n=1}^{N}\left(\frac{1}{n}\right)\right) \tag{5}
\end{align*}
$$

SPARSE 3-PARAMETER RESTRICTED IBP (S3R-IBP)

- Combine strengths of three-parameter IBP and restricted IBP

$$
\begin{gather*}
\quad \sim \operatorname{SBP}(1, \alpha, H) \tag{9}\\
\sim
\end{gather*}
$$

We denote this flexible prior as $\mathbf{Z} \sim \operatorname{S3R}-\operatorname{IBP}(\alpha, c, \sigma, f)$

- Let $\mathbf{X} \in \mathbb{N}^{N \times D}, N$ samples, and D dimensions
- We build a structured infinite latent feature model for count data

$$
\begin{aligned}
& x_{n d} \sim \operatorname{Poisson}\left(\mathbf{Z}_{n} \cdot \mathbf{B}_{d}\right), \\
& B_{k d} \sim \operatorname{Gamma}\left(\alpha_{B}, \frac{\mu_{B}}{\alpha_{B}}\right), \\
& \mathbf{Z} \sim 3 \operatorname{liBP}(\alpha, c, \sigma, f)
\end{aligned}
$$

where α_{B} and μ_{B} are the shape and mean of the prior Gamma distribution. - Available parameters:

- mass parameter a
- concentration parameter $c>-\sigma$ - marginal prior f for J_{n}

Features are made sparse by choosing $\alpha_{B}<1$.

Motivation: Why some countries are wealthier than others?
Theory of Economic Complexity: Capabilities are "intangible assets which drive the development, wealth and competitiveness of a country" (Cristelli et.al, 2013).

- Triangular structure
- Diversified countries producing exclusive products
Non-diversified countries producing standard products

Products

Three-parameter IBP (Teh et.al, 2009)

- More flexible distribution for stick weights (power-law behaviors)

In the De Finetti's representation, it uses a Stable-beta process (SBP)

- Culinary Metaphor:
- Customer 1 tries Poisson (α) dishes.
- Customer n tries:

$$
\begin{align*}
p\left(Z_{n k}=\right. & \left.1 \mid \mathbf{Z}_{-n}\right) \tag{6}\\
\quad p\left(J_{\text {new }}\right) & \sim \operatorname{moisson}\left(\alpha-\sigma \frac{m_{k}}{n+c-1}\left(\frac{\Gamma(1+c) \Gamma(n+c+\sigma-1)}{\Gamma(n+c) \Gamma(c+\sigma)}\right)\right. \tag{7}
\end{align*}
$$

Disadvantage: Number of ones per row J_{n} still Poisson-distributed

Restricted IBP (Doshi-Velez et.al, 2015)

- Non-exchangeable, with arbitrary marginal prior f over J_{n}

In the De Finetti's representation, it uses restricted Bernoulli processes:

$$
\begin{aligned}
& R-\operatorname{BeP}\left(\mathbf{Z}_{n} ; \mu, f\right)=f\left(J_{n}\right) \text {. }
\end{aligned}
$$

(8)

- Disadvantage: Stick weights cannot follow power-law behaviors.

Inference Scheme

- Model conditionally conjugate: auxiliary variables $x_{n d, 1}^{\prime}, \ldots, x_{n d, K}^{\prime}$ such that $x_{n d}=\sum_{k=1}^{K} x_{n d, k}^{\prime}$, and $x_{n d, k}^{\prime} \sim \operatorname{Poisson}\left(Z_{n k} B_{k d}\right)$
- For each iteration, do:

1: Sample each element of matrix \mathbf{Z} using inclusion probabilities (Aires, 1999).
2. Sample latent measure π using Metropolis-Hasting within Gibbs (Doshi-Velez et.al, 2015). et.al, 2015).
using a dynamic programming approab since using a dynamic programming approach, since:

$$
D_{J_{n}}^{K}=\left(1-\pi_{K}\right) D_{J_{n}}^{K-1}+\pi_{K} D_{J_{n}-1}^{K-1}
$$

3: Sample each element of \mathbf{B} and \mathbf{X}^{\prime} from their conditional distributions. 4: Sample hyperparameter α according to (Archambeau, 2015).
(14) \qquad Tale Meta-features. A sharp division of the world arises.

\qquad

Capturing sparsity structure. S3R-IBP gives the best fit for the distribution of number of non-zero values per row in \mathbf{X}.

Id	Products with highest weights	IBP
F1	misc. animal oils (0.78), bovine entails (0.72), bovine meat (0.68), milk (0.63), equine (0.62), butter (0.58)	
F2	synthetic woven, synth. yant, woven < 85% synth.	plastic containers (0.43) baked goods (0.41)
F3	parts metalworking, tool parts, polishing stones	
F4 F5	Aldehyde-Ketone, glycosides-vaccines, medicaments synthetic rubber, acrylic polymers, silicones	tissue paper (0.40) metal containers (0.39)
F6	measuring instruments, math inst, electrical inst.	
F7	vehicles parts, cars, iron wire	S-IBP
F8	improved wood, mineral wool, heating equipment	
F9	elect. machinery, vehicles stereos, data processing eq.	bovine (0.53)
F10	baked goods, metal containers, misc. edibles	improved wood (0.51)
F11	misc. atticles of iron, carpentry wood, wood articles	misc. vegetable oils (0.50)
F12	vegetables, fruit-vegetable juices, misc. fruit	butter (0.50)
${ }^{\text {F13 }}$	misc. pumps, ash-residues, chemical wood pulp	rape seeds (0.47)
${ }^{\text {F14 }}$	nnth. undergarments, feminine outerwear, men's shirts	misc. wheat (0.45)
F15	. totating, electric plant parts, control inst	

Id Weight Id Weight

