

SPARSE THREE-PARAMETER RESTRICTED INDIAN BUFFE FOR UNDERSTANDING INTERNATIONAL TRADE

INTRODUCTION

- **Aim**: Explore high-dimensional count data.
 - a) Increase model interpretability.
 - b) Find structured solutions in latent space.
- **Contribution**: A Bayesian non-parametric Poisson factorization model that gives easy-to-interpret and structured solutions.
- Key Idea: Force sparsity in the features and improve prior flexibility to be consistent with reality, by combining the stable-beta process with the restricted Indian Buffet Process.

THEORETICAL BACKGROUND

Indian-Buffet Process (Ghahramani et.al, 2006)

- Stochastic process defining a probability distribution over equivalent classes of binary matrices. We denote: $\mathbf{Z} \sim \text{IBP}(\alpha)$.
- ▶ It corresponds to the limit when $K \rightarrow \infty$ of parametric model:

$$\pi_k \sim \text{Beta}(\alpha/K, 1),$$

 $z_{nk} \sim \text{Bernoulli}(\pi_k)$

It can also be constructed based on its underlying De Finetti's representation, i.e., as a mixture of Bernoulli processes directed by a beta process:

$$\mu \sim \mathrm{BP}(\mathbf{1}, \alpha, H)$$
 $\mathbf{Z}_{n} \sim \mathrm{BeP}(\mu)$

- where $\mu = \sum_{k} \pi_k \delta_{\theta_k}$ is the directing measure, and H is the probability base measure (Thibaux et.al, 2007).
- Disadvantage: Mass parameter α couples both a priori number of ones per row J_n and total number of active features K^+ .

$$J_n \sim \text{Poisson}(\alpha)$$

 $K^+ \sim \text{Poisson}\left(\alpha \sum_{n=1}^N \left(\frac{1}{n}\right)\right)$

SPARSE 3-PARAMETER RESTRICTED IBP (S3R-IBP)

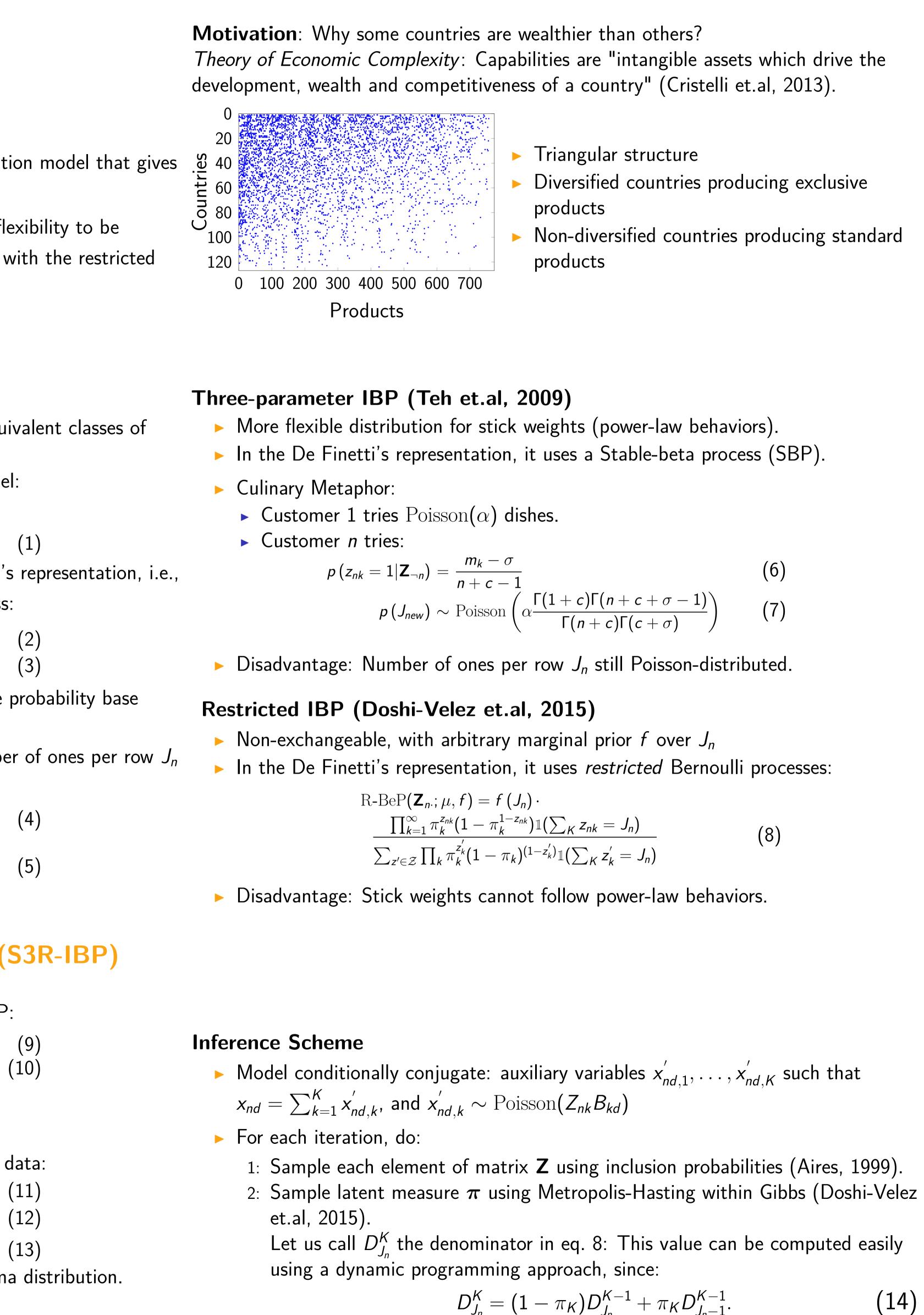
Combine strengths of three-parameter IBP and restricted IBP:

$$\mu \sim \text{SBP}(1, \alpha, H)$$

 $\mathbf{Z}_{n} \sim \text{R-BeP}(\mu, f)$

We denote this flexible prior as $\mathbf{Z} \sim \text{S3R-IBP}(\alpha, c, \sigma, f)$.

- ▶ Let $\mathbf{X} \in \mathbb{N}^{N \times D}$, N samples, and D dimensions.
- ▶ We build a structured infinite latent feature model for count data:


$$\mathbf{x}_{nd} \sim ext{Poisson} \left(\mathbf{Z}_{n} \cdot \mathbf{B}_{\cdot d} \right),$$

 $\mathbf{B}_{kd} \sim ext{Gamma} \left(\alpha_B, \frac{\mu_B}{\alpha_B} \right),$

$$\mathbf{Z} \sim 3 \text{R-IBP}(\alpha, \boldsymbol{c}, \sigma, f)$$

where α_B and μ_B are the shape and mean of the prior Gamma distribution. Available parameters:

- \blacktriangleright mass parameter α
- \blacktriangleright marginal prior f for J_n
- Features are made sparse by choosing $\alpha_B < 1$.

▶ stability component $\sigma \in [0, 1)$

• concentration parameter $c > -\sigma$

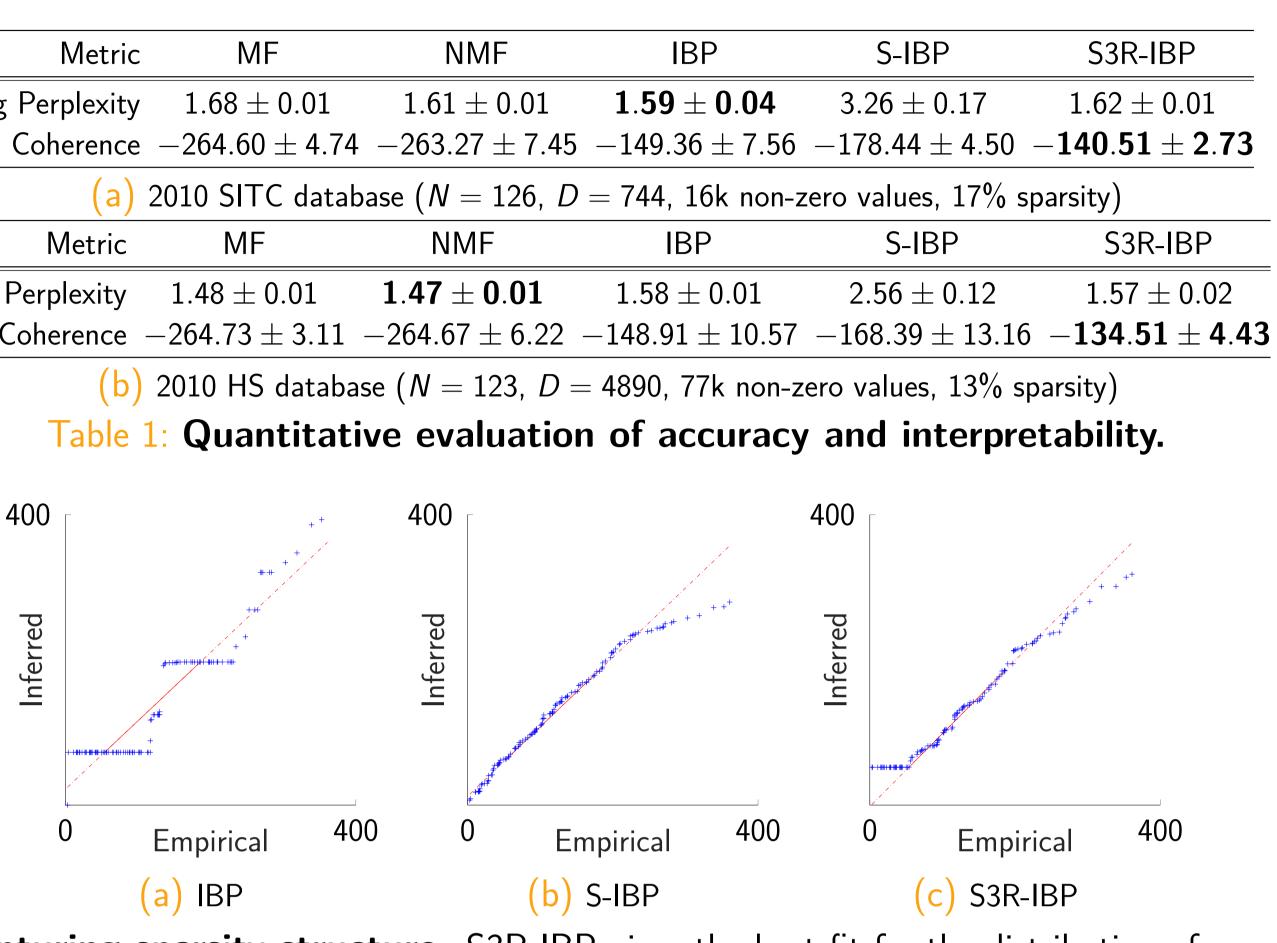
- 3: Sample each element of **B** and \mathbf{X}' from their conditional distributions.
- 4: Sample hyperparameter α according to (Archambeau, 2015).

Melanie F. Pradier¹ Fernando Perez-Cruz²

¹Harvard University ²Swiss Data Science Center melanie@seas.harvard.edu

Diversified countries producing exclusive

Non-diversified countries producing standard


(6) (7)

(8)

(14)

RESU	LTS

_	Metric	MF	NMF	
l	_og Perplexity	1.68 ± 0.01	1.61 ± 0.01	1.5
	Coherence	-264.60 ± 4.74	-263.27 ± 7.45	-149
	(a)	2010 SITC datab	base (${\it N}=126$, ${\it D}$	= 744
	Metric	MF	NMF	
L	og Perplexity	1.48 ± 0.01	1.47 ± 0.01	1.58
	Coherence	-264.73 ± 3.11	-264.67 ± 6.22	-148.9
	(b)	2010 HS databa	se (${\it N}=123$, ${\it D}$ =	= 4890
	Table	1: Quantitati	ve evaluatio	n of a

Capturing sparsity structure. S3R-IBP gives the best fit for the distribution of number of non-zero values per row in X.

ld **Products with highest weights**

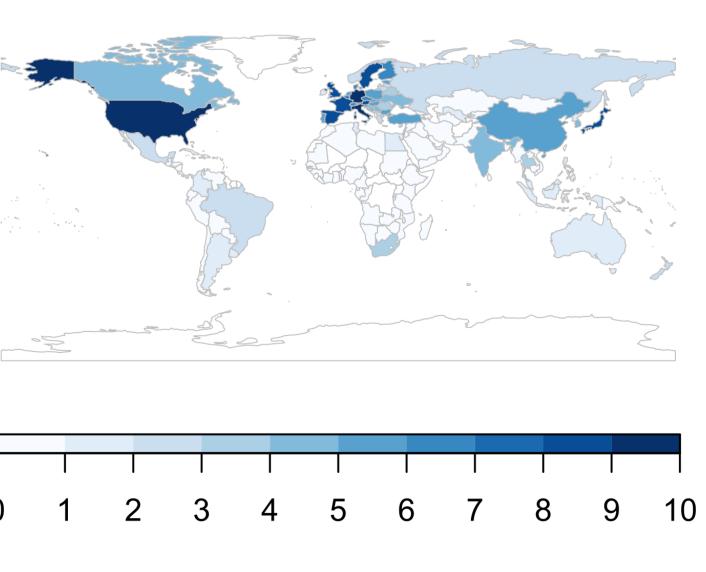
F1	misc. animal oils (0.78), bovine entails (0.72), bovine meat (0.6 (0.63), equine (0.62), butter (0.58)
F2	synthetic woven, synth. yarn, woven $< 85\%$ synth.
F3	parts metalworking, tool parts, polishing stones
F4	Aldehyde–Ketone, glycosides–vaccines, medicaments
F5	synthetic rubber, acrylic polymers, silicones
F6	measuring instruments, math inst., electrical inst.
F7	vehicles parts, cars, iron wire
F8	improved wood, mineral wool, heating equipment
F9	elect. machinery, vehicles stereos, data processing eq.
F10	baked goods, metal containers, misc. edibles
F11	misc. articles of iron, carpentry wood, wood articles
F12	vegetables, fruit–vegetable juices, misc. fruit
F13	misc. pumps, ash-residues, chemical wood pulp
F14	synth. undergarments, feminine outerwear, men's shirts
F15	misc. rotating, electric plant parts, control inst. of gas

Features learned by S3R-IBP.

Id Weight Weight ld F12 0.32 F11 0.68 0.17 F15 0.60 0.16 0.59 0.14 F7 0.52 F6 0.13 0.34 F13 0.05 F13 0.32 0.04 0.31 F5 0.04 0.31 F5 0.04 0.14 F4 0.04 F15 0.05 0.03 0.02 0.03 0.01 0.02 F11 F14 0.00 0.02 F3 F12 0.00 a) M-F0 M-F1 Table 4: Meta-features. A sharp division of the world arises.

Viktor Stojkoski³ Zoran Utkovski^{3,4} Ljupco Kocarev^{3,5}

³Macedonian Academy of Sciences and Arts ⁴University Goce Delcev in Stip ⁵University of California in San Diego


meat (0.68), milk

IBP

confectionary sugar (0.45) plastic containers (0.43) baked goods (0.41) tissue paper (0.40) metal containers (0.39) soaps (0.39) S-IBP

bovine (0.53) improved wood (0.51) misc. vegetable oils (0.50)butter (0.50) rape seeds (0.47) misc. wheat (0.45)

Competitors.

HARVARD UNIVERSITY MACEDONIAN ACADEMY OF SCIENCES AND ARTS