Latent feature models decompose observed attributes
of complex data into combinations of simple factors
or features. We present:

e a novel feature model with a flexible nonparame-
tric prior that allows for arbitrary correlations
amongst the latent features

e tractable inference for our model via a collapsed
Gibbs sampler
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The HSBP Feature Model
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The Feature Paintbox Prior

The hierarchical stick-breaking paintbox process
(HSBP) has the following iterative construction:
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Canonical paintbox example.
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We can sample each row z,, element-wise from
each Bernoulli conditional probability distribu-
tion by traversing the tree top down:
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Properties of HSBP \

Vanishing marginal feature probability. The
proposed iterative process gives rise to valid feature
allocations if mx vanishes as K — oo. The marginal
probability of feature K can be written as:
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The expectation E [rx| can be written in closed-form
in the limit K — oo:
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Exchangeability We can prove exchangeability if
for any z1,z9, and z3, it holds that:

d
p(z2, 23|21) = p(z3, 22|21)

It is easy to show in Eq. (4) that the probability of a
new vector p (zn |Z1:(n_1)) only depends on the previ-
ous number of counts along the branch corresponding
to z,, independently of the order of previous features.
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We derive a collapsed Gibbs sampler:
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where ¢_" is a sufficient statistic accounting for the
number of times that the binary vector € appe-
ars in Z_,, and S, is the set of subsequent par-
tial binary vectors for observation n, ie., S, =

{Zm, Zn,(1:2)y+ -+ s Zn,(l:K)}-

More efficiently, we propose a Metropolis-Hasting
within Gibbs with row-proposals according to Eq. (1).
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@ Results, ~
We compare an infinite latent feature model with
Gaussian likelihood using either an Indian Buffet Pro-
cess or HSBP prior. Considered datasets: (left) cor-
related toy images (N = 300, D = 36), and (right)
breast cancer dataset (N = 500, D = 30).

1. The HSBP prior improves performance substan-
tially in the held-out data.
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2. The HSBP prior improves recovery of the true
components.
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Discussion N

e Paintbox as binary tree of conditional probabilities

IBP

e IBP generalization by accounting for both positive
and negative correlations among features

e Better reconstruction + interpretable dictionaries

e Next: optimization, scalability, non-linear models
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