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Latent feature models decompose observed attributes
of complex data into combinations of simple factors
or features. We present:

• a novel feature model with a flexible nonparame-
tric prior that allows for arbitrary correlations
amongst the latent features

• tractable inference for our model via a collapsed
Gibbs sampler

Motivation

ν ∼ HSBP(α, p)

A ∼ N (0, σ2
0I)

zn ∼ Mult (1, {πε}ε∈SK )

X|Z,A ∼ N (ZA, σ2
xI),

The HSBP Feature Model

The hierarchical stick-breaking paintbox process
(HSBP) has the following iterative construction:

• π∅ = 1, ν∅ ∼ Beta( α
Kp , 1)

• ∀ k = 1, · · · ,K, and j = 1, · · · , 2k−1, draw
νεj ∼ Beta( α

Kp , 1), such that:

π1 = ν∅

π0 = (1− ν∅)
π01 = (1− ν∅)ν1
π111 = ν∅ν1ν11

π010 = (1− ν∅)ν1(1− ν01)

. . .

0 1

Canonical paintbox example.

We can sample each row zn element-wise from
each Bernoulli conditional probability distribu-
tion by traversing the tree top down:

p(zn) =

K∏
k=1

p
(
znk|zn,1:(k−1)

)
. (1)

The Feature Paintbox Prior

Vanishing marginal feature probability. The
proposed iterative process gives rise to valid feature
allocations if πK vanishes as K → ∞. The marginal
probability of feature K can be written as:

πK =
∑

ε∈SK−1

πε1 =
∑

ε∈SK−1

∏
ε′<ε

νε′

The expectation E [πK ] can be written in closed-form
in the limit K →∞:

lim
K→∞

E [πK ] = lim
K→∞

K∑
r=1

(
K − 1
r − 1

) (
α/KP

)r
(α/KP + 1)

K

= lim
K→∞

α

α+Kp
= 0 ∀p > 0 (2)

Exchangeability We can prove exchangeability if
for any z1,z2, and z3, it holds that:

p(z2, z3|z1)
d
= p(z3, z2|z1)

It is easy to show in Eq. (4) that the probability of a
new vector p

(
zn|Z1:(n−1)

)
only depends on the previ-

ous number of counts along the branch corresponding
to zn, independently of the order of previous features.

Properties of HSBP

We derive a collapsed Gibbs sampler:

p
(
znk|Z−(nk)

)
∝
∫
ν

p (zn|ν) p (ν|Z−n) dν (3)

∝
∏
ε∈Sn

(
α
Kp + φ−nε1

)znk
(
1 + φ−nε0

)(1−znk)(
α
Kp + 1 + φ−nε

) , (4)

where φ−nε′ is a sufficient statistic accounting for the
number of times that the binary vector ε′ appe-
ars in Z−n, and Sn is the set of subsequent par-
tial binary vectors for observation n, i.e., Sn =
{zn1, zn,(1:2), . . . , zn,(1:K)}.

More efficiently, we propose a Metropolis-Hasting
within Gibbs with row-proposals according to Eq. (1).

Inference

We compare an infinite latent feature model with
Gaussian likelihood using either an Indian Buffet Pro-
cess or HSBP prior. Considered datasets: (left) cor-
related toy images (N = 300, D = 36), and (right)
breast cancer dataset (N = 500, D = 30).

1. The HSBP prior improves performance substan-
tially in the held-out data.
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2. The HSBP prior improves recovery of the true
components.
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Results

• Paintbox as binary tree of conditional probabilities

• IBP generalization by accounting for both positive
and negative correlations among features

• Better reconstruction + interpretable dictionaries

• Next: optimization, scalability, non-linear models

Discussion
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Center for Research on Computation and Society, and
Institute of Applied Computational Sciences.
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