
1 Introduction 1

Large-Scale Sentence Clustering from Electronic
Health Records for Genetic Associations in Cancer

M. F. Pradier, F. Perez-Cruz∗
Department of Signal Theory

and Communications
Univ. Carlos III in Madrid, Spain
melanie@tsc.uc3m.es

S. Stark, S. Hyland, J.E. Vogt, G. Rätsch
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Abstract

This paper proposes a new framework to find associations between somatic mu-
tations and clinical features in cancer. The clinical features are directly extracted
from the Electronic Health Records by performing a large-scale clustering of the
sentences. Using a linear mixed model, we find significant associations between
EHR-based phenotypes and gene mutations, while correcting for the cancer type
as a confounding effect. To the author’s knowledge, this is the first attempt to per-
form genetic association studies using EHR-based phenotypes. Such research has
the potential to help in the discovery of unknown mechanisms in cancer, which
will allow to prevent the disease, monitor patients at risk, and design tailored
treatments for the patients.

1 Introduction

Cancer encompasses not one, but a vast group of genetic diseases that are not very well under-
stood yet. In the last decade, high-throughput genotyping technologies have led to the discovery
of cancer-correlated gene mutations, most of which were not previously suspected to be related to
carcinogenesis [1]. However, only the gene mutations with very strong effects have been discovered
and many other genes with weaker effects still remain to be found [2]. Genetic-association studies
have been widely used in the search for such genes, but success has been limited so far [3].

A first difficulty in cancer association studies is the immense phenotypic heterogeneity. Complex
diseases such as melanoma, prostate, or breast cancer have indeed proved to be very heterogeneous,
which reduces statistical power in the discovery method and causes some associations to remain
hidden [4, 5, 6]. As a result of such diversity, most cancer phenotypes are still poorly understood,
and are extremely hard to define accurately, even using ontologies. Also, given the huge number of
phenotypical variants, conducting valid association studies in rare cancers is particularly challenging
due to inadequate cohort sizes [2]. In such a scenario, new approaches for genetic association studies
must be found that are able to capture phenotype heterogeneity.

In recent years, the adoption of Electronic Health Records (EHR) in hospitals has increased dramati-
cally, and has become an interesting resource for phenotyping [7, 8]. EHR consist of both structured
and unstructured information. Although structured data is very valuable, most of the clinical data,
e.g., around 98% of the EHRs, comes as unstructured notes [9]. These include a broad spectrum
of clinically-relevant phenotypic information, and might be useful to identify new phenotypes, still
unclassified in ontologies [8, 9].

This paper presents a new framework to find associations between somatic mutations and clinical
features in cancer, that deals with phenotype heterogeneity, rare cancers, and the lack of precise
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Figure 1: Process to obtain the phenotype information. The upper part shows how we generate a
summary document for each patient. The sentence clustering procedure is shown at the bottom.

phenotypical terms in ontologies. The considered clinical features are directly extracted from the
unstructured EHRs of the patients at the sentence level. We look at sentences because these are small
entities, but still precise enough to describe homogeneous sub-phenotypes. Since each sentence is
most probably unique, we need to perform a large-scale clustering previous to the analysis. The
resulting features are then used in a genetic association study against somatic mutations, using a
linear mixed model. We consider multiple cancers jointly in order to increase statistical power,
allow for the analysis of rare cancers, and identify shared mechanisms across cancers. Indeed, most
cancers are known to share a common pathogenesis despite specificities of the cell type and tissue
origin [10]. In our study, we use the cancer type as a confounding factor. This avoids getting already
well-known per-cancer mutations, and are able to obtain less well-known associations with gene
mutations of smaller effect size. Our procedure generates potentially interesting associations that
might be useful for further research in oncology.

2 Feature Extraction

2.1 Large-scale Sentence Clustering from EHR

This Section describes our procedure to obtain a P×Qmatrix Y of phenotypes, whereQ designs the
extracted clinical features, and P is the number of patients. We use our method to partition sentences
from 2,008,462 EHRs provided by 295,154 cancer patients of the Memorial Sloan-Kettering Cancer
Center in New York. Figure 1 describes the main elements of our approach. Each patient has a list
of EHRs associated, which we collapse into a single big document (upper part). We thus obtain
a patient by sentences matrix, most of which are unique sentences. In order to be able to use the
sentences as clinical features, we perform a large-scale clustering (bottom part) in three steps.

First, we perform a basic parsing of the clinical notes. In particular, we remove all stop words and
the most frequent words, as these do not contribute to the overall meaning of the sentences. We
also ignore punctuation, replace upper case letters by lower case ones, and collapse all numericals
into a single pound sign (#). From the original 101,564,226 sentences, 34,612,424 unique sentences
remain. These sentences are stored as a sparse matrix of sentences by words.

The second step consists in finding the K-nearest neighbors (KNN) for each sentence Si. For that,
we need to compute the similarity of each pair of sentences, which will depend on the number of
shared words. Intuitively speaking, words should not contribute equally to the similarity measure.
For example, a rare specific medical term should have a bigger contribution than a more common
word. To capture this effect, words are weighted by the log of their inverse frequency. If S is the set
of all unique sentences, the weight fw of a term w is given by:

fw ≡ f(w) = − log
|{Si : Si ∈ S,w ∈ Si}|

|S|
(1)

We define a weighted jaccard index φ as a similarity measure:

φ(Si, Sj) =

∑
w∈Si∩Sj

f(w)∑
w∈Si∪Sj

f(w)
(2)
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Figure 2: Partial Visualization of the Louvain’s method output. Each node is a single sentence.
Colors of the nodes correspond to the Louvain’s most granular clustering. The entire picture is the
second most granular clustering.The word cloud is created with the vocabulary of the high-level
cluster. Size is determined from frequency of the term. A few sample sentences are shown.

Since the sentence by word matrix is extremely sparse, the computational load decreases consider-
ably by only computing the similarity of sentences sharing at least one word 1.

In the third step, the top K neighbors are stored in a dense matrix. For each sentences neighbor,
we compute the number of neighbors they share, take the top K neighbors and store these as an
even sparser matrix. Such procedure is often done in social networks to remove noise and detect
communities [11]. Finally, this matrix is treated as an adjacency matrix of a network, where nodes
are sentences and edges are weighted by the similarities. Sentences are then clustered using the
Louvain method [11]. This is an unsupervised hierarchical clustering method designed to detect
community structure in networks. It works by iteratively and greedily optimizing local modularity.
The algorithm produces multiple levels of clustering, with lower-level clusters acting as more de-
tailed, granular clusters than larger higher-level clusters. Figure 2 shows one of the resulting clusters
from the method.

2.2 Genetic Information from the MSK IMPACT database

So far, genomic testing of tumors has been done routinely only for certain solid cancer tumors, such
as melanoma, lung, or colon cancer. For most cancers, the available tests have been limited to ana-
lyzing one or a handful of genes at a time, and within each gene, only the most common mutations
could be detected [12]. A new targeted tumor sequencing test called MSK-IMPACT (Integrated
Mutation Profiling of Actionable Cancer Targets) is able to detect gene mutations and other critical
genetic aberrations in both rare and common cancers [13]. This test is a hybridization capture-based
next-generation sequencing assay for targeted deep sequencing of all exons and selected introns.

For each patient, tumor cells are compared with healthy cells of that same patient, extracted from
the blood stream. In this paper, a gene is said to be mutated when there exists at least one difference
in the sequence between the tumor cells and healthy cells for that particular gene2. The resulting
information is summarized in a binary matrix X with dimensions P ×G, where P is the number of
patients, andG is the number of genes considered by the test, i.e., 342 genes. These genes have been
shown to play a role in the development or behavior of tumors, although their individual relation to
specific phenotypes remains obscur. [13, 14].

3 Discovery Method: Linear Mixed Model

Linear mixed models are one of the most widely used approaches in genetic association studies
due to its capacity to account for confounding effects and limit the number of false associations
[15, 16]. Let xpg be the indicator variable for a somatic mutation in gene g ∈ {1, ...G} and patient

1For that reason, removing commonly occurring words vastly improves the run time.
2The considered sequencing technology is able to remove most of the technical noise, which is not often the

case with other technologies.

3



4 Results and conclusion 4

p ∈ {1, ...P}. This is a binary variable that will be one if any somatic mutation occurred in the
corresponding gene. Let ypq be the binary indicator variable of the clinical feature q ∈ {1, ...Q} for
a given patient p. Finally, let us define cpl as the binary assignment variable of patient p to the cancer
type l ∈ {1, ...L}. For each pair of gene g and clinical feature q, we train a linear mixed model, as
follows:

y.q = x.gβ + uq + εq (3)

where β ∈ RG×1 are the fixed effects, u ∈ RP×1 are the random effects, and ε ∈ RP×1 is the obser-
vational noise. The prior assumptions for the structured and uniform noises are u ∼ N (0, σ2

uK) and
ε ∼ N (0, σ2

eI), K refers to a similarity matrix between the patients computed as the cosine distance
of the vectors cpi. and cpj . of confounders, i.e., the cancer type. In other words, K = CCT . The
linear mixed-model assumes that the output y.q is Gaussian-distributed. Since our data is binary and
count data, we apply a standard rank-based inverse normal transformation beforehand [17]. Thus,
we have

y.q ∼ N (x.gβ, σ
2
uK + σ2

eI) (4)

The model parameters are found by maximizing the log likelihood using standard optimization tech-
niques within a python platform called LIMIX [16]. In the final step, we obtain p- and q-values for
each pair (y.q, x.g) using likelihood ratio tests. If H0 is the null hypothesis, ti the statistic of test
i and α the significance level, p-value= Pr(ti ≥ α|H0) and q-value= Pr(H0|ti ≥ α). Under the
Gaussian assumption, we know the theoretical null hypothesis distribution, namely, that the likeli-
hood ratio statistics follow a χ2 distribution. Finally, we perform a correction for multiple hypothesis
testing using Bonferoni correction [18].

4 Results and conclusion

Our association study is performed using 2205 patients (those having both genetic and clinical in-
formation), 343 genes, 7k clinical features, and 63 different cancer types. After correcting for
confounders, we find 332 significant hits having a q-value below 1%. Figure 3 shows some associa-
tion examples found by our model. Some are already well known, like gene APC with colon cancer.
Other associations such as TRAF7 with cystic carcinoma have been confirmed very recently, and
others like ALK with anemia are still just hypothetical in the medical community. Interestingly, we
are also able to find associations with very low effect size such as ERBB4 with colon carcinoma,
which was not confirmed until this year. A more extensive list of associations can be found in
the Supplementary. In general, our method is able to find potentially interesting associations, with
many of them having been confirmed within the last decade. We hope that this procedure will help
physicians and biologists to better understand the underlying mechanisms of cancer.
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