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1 Literature Review

In this section, we review the literature that is related to our approach and indicate the main dif-
ferences with our proposal. We have carried out a thorough literature search and, for brevity, we
only reference those that are directly related to our approach, so many papers that are not directly
comparable have been left out. We know this is a widely-research field and if any relevant body of
work has not been referenced, it has been unintentional.

1.1 Modeling with Mixture of GP Experts

Mixture of expert models in which each expert is a GP has been proposed in the literature in several
occasions. One of the most popular methods in Bayesian regression is the Infinite Mixture of Experts
(IMoE) to capture local properties of the signal in different areas of the input space [7]. A gating
function is used to determine which GP is active in each area, making it useful locally. Extensions of
the IMoE include modeling the input and output jointly, i.e., modeling p(«, y) [13]], or allowing the
use of the same experts in different input areas through hierarchical DPs [19]]. Our work addresses
GP components at a global scale, which is a more natural way to capture heteroscedastic noise and
other gradual behaviors. Global GP priors were previously proposed in [[12]], but only considering a
fixed number of mixtures. Also the work in [18] proposes a mixture of global Gaussian Processes
for traffic flow prediction, but their approach is generative and models the input space too.

Multiresolution Gaussian Processes [3]] relies on a hierarchy of GPs to partition the whole space in
order to capture long-range, non-Markovian dependencies while allowing for abrupt changes. Our
method does not partition the input space and allows for multiple functions at a same input location
instead. Additive GPs (aGP) in [4,|14]] divide the output function into low-dimensional components
of varying degrees. Our method is different as we allow for multiple output functions instead of a
partitioning of the output dimensions, i.e.

9(yi) = > fel@i,...owip)  (IMoGGP)
k=1
9(yi) = f(@in) + f(@i2) + f(wiz, zia) + ... (aGP)

The aGP seems more suitable for high-dimensional input spaces, it fails to capture heteroscedasticity
or multimodality, as our proposal does.

1.2 Density Regression with Dependent Dirichlet Processes

DDPs are useful to model collections of distributions that vary in time, space or experimental set-
tings. In the literature, it is often the case to use a semiparametric model, i.e., a parametric function
for the signal, and a non-parametric prior for the noise, in order to capture heteroscedasticity or
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non-Gaussianity [3 [15} |6l |2} [8]. Our model considers a more general formulation by assuming a
completely non-parametric model for both signal and noise.

In [15], a DDP prior is used to model the joint distribution p(x,y), given different experimental
conditions. With such a generative approach, modeling = might dominate over y, resulting in an
under-fitting of y. Our approach directly focus on the conditional distribution p(y|x), and applies
the DDPs in a different way, directly over the input space . Such discriminative perspective typi-
cally gives better accuracy and has the advantage of estimating less parameters than in the generative
approach. The work in [10] uses single-p DDPs, i.e., DDPs with constant weights over x, to clus-
ter the behavior of multiple ANOVA models under different experimental conditions. Here again,
their approach is generative, whereas we use the DDP to directly model the conditional distribution

p(ylz).

In [3], DDPs are used for Bayesian density regression with kernel-varying weights, assuming a lin-
ear relationship between y and . Our approach generalizes this work by replacing the linear basis
functions by arbitrary non-linear functions with a GP prior each. The authors in [6, 2] introduce a
DDP-based model for spatial modeling applications called the Spatial DP prior, which is a probabil-
ity weighted collection of random surfaces. They use a linear process for the signal and a mixture
of GPs to capture the noise. Because each atom in the DP corresponds to a realization of a random
field over the input space, their algorithm needs the assumption that multiple points are available at
each location x and in particular, that the number of points assigned to each GP is always uniform.
Our approach removes those restrictions and assumes no particular functional form of the signal.

1.3 Clustering of Time Series

Finally, hierarchical mixtures of Gaussian processes have often been used in the literature to cluster
time series, as in [17], [9] and [16]. All these works assume prior knowledge of which points
belong together to the same temporal sequence, and assign the points of a temporal sequence jointly
to the same GP. All these models are generative and seek interpretable results. In our case, cluster
assignments are purely auxiliary variables, we only care about predictive accuracy. Slightly different
and also closely related to our approach is the work in [[11]], which uses a parametric mixture of GPs
for the data association problem. The objective there is to find the appropriate cluster assignments
for each point and recover multiple trajectories, which is useful in multi-tracking scenarios. In our
case, mixture assignments are just auxiliary variables, and we assume a potentially infinite number
of mixtures to represent the data.

2 Database Descriptions

The synthetic databases correspond to the examples in Section 2 of the main manuscript, and in-
clude n = 2000 observations for each case. The Heteroscedasticity example corresponds to a
quadratic function y = 2 — 0.5 + € with added input-dependent Gaussian noise € ~ A (O, (0.01 +
sin(27x/10)?)?). The Non-Gaussianity case corresponds to a cubic function y = 42® — 1+ e+ 3y
with added Student’s t and gamma noise, € ~ Students’ t(10) and v ~ Gamma(2, 0.5 The last
toy example called Multimodality consists of 3 GPs generated using Mattern covariance functions
plus Gaussian noise. In all these examples the underlying GP covariance function was a squared
exponential and the likelihood model was Gaussian. Our IMoGGP model is able to deal with het-
eroscedastic data, heavy tailed and asymmetric noise, and parallel Gaussian processes with the same
regression model, by adding global GPs over the whole input space to capture these behaviors.

We also consider three different real databases, all of them publicly available. The concrete database
from [20] consists of 1030 observations and the input dimension is 8. The objective is to predict
the compressive strength (MPa) of concrete, which is one of the most important materials in civil
engineering. This is a highly nonlinear function of age and ingredients that include cement, blast
furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate. The actual con-
crete compressive strength (MPa) for a given mixture under a specific age (days) was determined
from laboratory.

"We define the Gamma distribution in terms of shape and rate parameters.



For the New York City marathon dat;ﬂ the objective is to predict the arrival time of a runner given
his gender and age. The output y designates the arrival time, and « is a two dimensional vector with
the age and gender for each runner. We take a subset of 4, 800 runners in total, keeping the same
age/gender relative distribution. Finally, the RSSI database consists of 4799 measurements of the
Received Signal Strength Indicator (RSSI), which captures the power of different wireless networks
at different locations along a large corridoﬂ Modeling RSSI correctly is very important, as different
signal strengths can have a strong impact on functionality in wireless planning and localization [].

3 Further Results

Figure[T]illustrates the capacity of our IMoGGP to estimate percentiles in the marathon database for
the arrival time of male and female runners. For each age, the finishing time can be modeled as a
countably infinite mixture of Gaussians, and percentiles can be easily computed by integrating over
this linear combination of Gaussians.
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Figure 1: Percentile Estimation using the IMoGGP. Application to the arrival time of male and
female runners in the Marathon database.
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Figure 2: Qualitative behavior of the IMoGGP and IMoE for the RSSI database. The legend
shows the number of points assigned to each individual GP. The underlying functions in the IMoE
case represents the gating function for each GP. Point assignments to different GPs are represented
with different colors and shapes.

Figure 2 compares the qualitative behavior of the IMoGGP and IMoE dealing with a real database,
in particular, we show the estimated global Gaussian Processes in the case of the RSSI database.
The gating function for the IMoE is also represented below the curves. The IMoGGP fits the data
using a smaller number of GPs that cover the whole input space, whereas the IMoE tends to use
several local functions.

’Data for the NYC marathon is available at |http://www.tcsnycmarathon.org/
about-the-race/results

*The authors will release this database in their webpage.
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