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Abstract

In this paper, we propose a simple and powerful approach to solve nonlin-
ear regression problems using an infinite mixture of global Gaussian processes
(IMoGGP). Our method is able to deal with arbitrary output distributions, non-
stationary signals, heteroscedastic noise and multimodal predictive distributions
straightforwardly, without the modeler needing to know these attributes a priori.
The IMoGGP can be interpreted as a mixture of experts, in which the experts are
not local and they cooperate in the whole input space to provide accurate regres-
sion estimates. It can also be framed as a Dependent Dirichlet Process to solve
discriminative tasks. Experiments show that our method gives comparative results
to state-of-the-art approaches and its simplicity makes it an attractive method for
non-ML-expert practitioners. Code will be available at the authors’ webpage.

1 Introduction

Gaussian processes (GPs) are the best-known Bayesian non-parametric solution for regression [21],
and in general for discriminative modeling. The standard GP assumes a Gaussian likelihood, al-
though extensions to deal with other likelihood models exist either by using non-conjugate distribu-
tions [10] or wrappers [22, 11]. The GP can also be modified to deal with non-stationary signals
by changing the kernel function [18] or even combining multiple kernels [3]. GPs have also been
extended to manage heteroscedastic noise either directly [7, 13] or by relying on mixture of ex-
perts [20, 15], as well as colored noise [16, 2]. However, all these modifications imply additional
design parameters which increase their complexity, and they fail to provide a unified solution to all
these aspects at once.

This paper presents a simple yet powerful approach to do all these modifications seamlessly and
at once. Instead of using a single GP that tracks the mean underlying function, we have several
GPs that model the underlying distribution for each input vector as an infinite mixture of Gaussians.
These GPs cover the whole input space, i.e., globally, allowing the predicted posterior probability to
be non-Gaussian, multimodal, heteroscedastic and/or non-stationary, without the need of explicitly
indicating or even knowing that those effects might be into play. Our infinite mixture of GPs can
potentially capture any complex functional behavior, in a similar fashion that an infinite mixture of
Gaussians can approximate any arbitrary density function.

For test input vector, our model provides an estimate of the output that is a linear combination of
GPs. The proposed method is a discriminative regression algorithm, in the same way standard GPs
are. Hence, we make no probabilistic assumptions over the input space. If we are strictly interested
in making a probabilistic statement over the output space given the input, adding a probabilistic
model over the input might be detrimental, both in terms of computational complexity and accuracy
of our predictions. The mixing proportions are held constant throughout the input space, so that all
GPs are active in the whole input domain. Hence, we avoid the need of relying on a gating function,
which is typically used to select a particular local functions. The mixing proportions, as well as the
hyper-parameters of the Gaussian processes, are inferred given the data.
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Figure 1: Conceptual comparison of different approaches. Sketch comparing (a) Infinite Mixture
of Global GPs, (b) Infinite Mixture of Experts, (c) Overlapping GPs for multi-tracking, (d) Spatial
Dirichlet Process, and (e) time series clustering. Each color represents a different GP.

Our approach is universal for solving any regression problem, but it is more effective for moderate-
sized input spaces and a larger number of samples per input dimension, because if the input dimen-
sion is large the fitting with one Gaussian process will prevail (i.e., we get the standard GP fitting)
and if the input dimension were low (or nonexistent), the solution would be that of a Dirichlet
process for a Gaussian mixture. In short, our method transitions seamlessly between the two lim-
iting processes. The proposed algorithm is a direct application of the Dependent Dirichlet Process
(DDP) [14], but our interpretation as a non-parametric universal regression discriminative procedure
is novel, as the standard interpretation of DDPs is that of an indexed collection of distributions1.

Related works. In Figure 1a, we show a one-dimensional cartoon solution that our discriminative
regression algorithm would be able to provide. Our algorithm is a mixture of experts, but not a
typical one in which the input space is chopped locally, using a gating function that decides who is
the expert for each input (see cartoon in Figure 1b). The proposed approach divides the available
data in independent GPs, so it presents the same computational savings as the standard mixture of
expert algorithms based on GPs. The data division is not based on local proximity rules, but on
improving the prediction accuracy of the output.

In [12], the authors infer trajectories, i.e., time series, in which each trajectory is represented by a
GP, as shown in Figure 1c, but there is no regression interpretation nor future predictions, and the
number of time series has to be known beforehand. In [6], the authors want to estimate the 10-day
aggregated rainfall in 39 locations in southern France and 6 test locations. They assume that the
input space has a low cardinality of potential locations, and each sample had an observation in all
input locations (see 1d), which can be seen as a particular case of our method. Our algorithm is also
similar to the clustering of time series using Dirichlet processes (DP) [8], as illustrated in Figure 1e,
but in that case samples are treated as whole sequences a priori, and the goal is to identify clusters.
Our algorithm is able to solve these applications directly or with minor modifications, while those
papers cannot be applied to solve the general regression problem.

2 Infinite Mixture of Global Gaussian Processes

The aim in a regression problem is to estimate y ∈ R given an input x ∈ RD and a database
Dn = {xi, yi}ni=1. From the available data it induces a general relation between the input x and the
output y. In probabilistic modeling this relation is expressed by a conditional model:

p(y|x,Dn). (1)

To introduce our Infinite Mixture of Global Gaussian Processes (IMoGGP) we are going to start from
the standard stick-breaking construction of Dirichlet Processes (DP) for countably infinite mixture
models [23]. Observations are then generated as follows:

π|α ∼ GEM(α) (2)
zi|π ∼ Multinomial(π) (3)
θm|H ∼ H (4)
yi|zi, {θm} ∼ F (θzi), (5)

1Actually, the author in [14] proposed a simple 1-D linear regression application in which the strength of
the DDP for non-parametric regression and its many desirable properties are not exploited nor hinted.
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where GEM stands for the stick-breaking prior by Griffiths, Engen and McCloskey [19], α is the
concentration parameter of the DP, and the mixing proportions π are sampled using a stick breaking
procedure [9]. zi indicates the cluster assignment of observation i, and θm designates the cluster
parameters for cluster m, which are sampled from the base measure H . Finally, observations are
sampled from F (·) given the cluster assignments and parameters. One standard selection for F (·) is
a Gaussian distribution in which θm represents its mean and variance.

In the regression setting, each yi is associated with an input xi and we can directly modify (5) as

yi|zi, {θm},xi ∼ F
(
θzi(xi)

)
, (6)

θm|H,φm ∼ Hφm
, (7)

where we assume that F
(
θzi(xi)

)
is Gaussian-distributed with mean µzi(xi) and variance σ2

zi(xi),
and Hφm is a Gaussian process prior with hyperparameters φm. Now each cluster parameter θm
corresponds to a latent function over the input space. This construction with a general F (·) is known
as a dependent Dirichlet process (DDP) with constant weights, and more specifically as a single-p
DDP [14], in which the parameters of each component of the infinite mixture model is indexed by
the input variable x.

Inference in this model is straightforward, because given {θm}, sampling zi and π is identical to
the inference of cluster assignments in DPs, and given the cluster assignments for all pairs (xi, yi),
{θm} can be inferred by sampling from the posterior GP distribution. We perform inference by a
simple MCMC procedure based on the auxiliary variable approach from Algorithm 8 in [17] that
allows to sample zi in parallel. The procedure for each iteration is detailed in Algorithm 1, in
which we have used the standard vector notation, i.e. y = [y1, . . . , yn]

>, X = [x1, . . . ,xn]
> and

z = [z1, . . . , zn]
>.

Algorithm 1 Inference for the IMoGGP - description of one Gibbs Sampling iteration:

1: Sample extended vector of mixture proportions (propose T new GPs):

π|z, α ∼ Dirichlet
(
n1, . . . nK , α/T . . . α/T︸ ︷︷ ︸

T times

)
(8)

2: Sample latent functions, i.e., cluster parameters θm, m = 1, . . . ,M+:

p(θm|π,y,X, z) ∝ p(θm|Hφm)p(y|X, z, θm) (9)

3: Sample cluster assignments:

p(zi|π, yi,xi, z−i, {θm}) ∝ p(zi|π) p(yi|xi, z, {θm}) (10)

4: Get hyperparameters φm, m = 1, . . . ,M+ by sampling (or maximizing) the evidence for each
individual GP in parallel [21]. Hyperparameters for new clusters are sampled from the prior.

5: Sample concentration parameter α using an auxiliary variable η as in [5].

Finally the predicted distribution for a new input x∗ is given by:

p(y∗|x∗,Dn) =
M+∑
m=1

πmp(y
∗|x∗,Dn, z, {θm}) (11)

where
p(y∗|x∗,Dn, z, {θm}) = N (µm(x∗), σ2

m(x∗)) (12)
and

µm(x∗) = k>mC−1m ym (13)

σ2
m(x∗) = km(x,x)− k>mC−1m km (14)

where km = [km(xm1 ,x
∗), km(xm2 ,x

∗), . . . , km(xmnm
,x∗)]> and Cm = Km + σ2

mI. The set
{xmj }

nm
j=1 are the xi for which zi is equal to m and (Km)rs = km(xmr ,x

m
s ). Finally km(x,x′) is

the kernel or covariance function for each GP.
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(a) (b) (c) (d) (e) (f)

sGP -0.0217 -3.4920 -3.3030 -0.5855 -1.6373 0.2033
IMoE 0.7017 -2.1248 -2.1604 1.9452 -1.6308 0.9943

PL
L

H

IMoGGP 0.9008 -2.1237 -1.2575 2.3587 -1.5723 0.9846

sGP 0.0288 4.8115 4.2815 93.4640 0.7877 86.6815
IMoE 0.0331 4.8394 5.2263 93.4640 0.7780 82.8929

M
SE

IMoGGP 0.0287 4.8500 4.2703 43.6710 0.7754 82.4264

Table 1: Comparison of the single GP (sGP), the Infinite Mixture of Experts (IMoE) and the
proposed Infinite Mixture of Global Gaussian Processes (IMoGGP). The three first columns
correspond to the toy examples plotted in Section 2: (a) Heteroscedasticity, (b) Non-Gaussianity, (c)
Multimodality. The last three columns correspond to real databases available online: (d) Concrete,
(e) Marathon, (f) RSSI.

Figure 2 shows the posterior GPs inferred by the IMoGGP model. The method is able to deal with
heteroscedastic data, heavy tailed and asymmetric noise, and multimodal distributions with the same
regression model, by adding global GPs over the whole input space to capture these behaviors.

(a) Heteroscedasticity. (b) Non-Gaussianity. (c) Multimodality.

Figure 2: Properties that can be captured by the IMoGGP model: (a) non-stationary, het-
eroscedastic noise; (b) non-Gaussian likelihoods, specifically a Student’s t with Gamma distributed
noise; and, (c) multimodal predictive distributions.

3 Results
This Section compares the performance of the IMoGGP against a single GP (sGP) and the Infinite
Mixture of Experts (IMoE) from [20]. The three algorithms are compared in exactly the same con-
ditions, with the same hyperparameters and input splits into training and test data. Each simulation
is run for 1000 iterations, and averaging is done for the last 500 iterations. All results are computed
on an independent test set corresponding to 20% of the total input data, and we perform 10 different
splits at each time. For all our experiments, we use the popular Noisy Squared Exponential (NSE)
kernel [21].

Table 3 shows quantitative results for both synthetic and real databases. We report the mean Predic-
tive Log Likelihood (PLLH) and Mean Squared Error (MSE) for each method and input database.
Our method gives the highest PLLH in five out of six databases. The highest gains are achieved for
the Multimodality and Concrete databases. Indeed, the IMoGGP is the only method able to use mul-
tiple functions at a single input location. On the other hand, the Concrete database is the example
with highest dimension (D = 8), and the curse of dimensionality makes it harder for the IMoE to
learn local functions. The IMoGGP is less affected as it uses global GPs over the input space and is
able to share more information across all dimensions.
Conclusion. In this paper, we have presented the IMoGGP, a simple, yet powerful approach to
solve general regression problems. We have shown its connection to DDPs and have compared its
performance to state-of-the-art approaches. Our method is rather suitable for very large databases
of moderate dimension. The computational cost is not enormous as the data points are partitioned in
several GPs, and sampling of cluster assignments can be run in parallel. As future work, we would
like to extend the model to deal with high input dimensions. In such scenario, it might be desirable
to have varying mixture weights across the input space like in [1] and a selection of relevant input
dimensions and orders, such as in [4].
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